L'infiniment grand

Yannick Mellier

Institut d'Astrophysique de Paris

1

Cours 3 (et plus) – 26 juillet 2011

L'infiniment grand

l'Univers de la cosmologie moderne

Yannick Mellier

Institut d'Astrophysique de Paris

III. Modèles d'Univers

Modèles standards d'Univers: Les ingrédients

- Une théorie de la gravitation: la relativité générale
- Le Principe Cosmologique
- Des équations d'état caractérisant les composantes de l'Univers

Modèles d'univers de Friedmann

Le principe cosmologique

L'Univers est homogène et isotrope et conserve cette propriété au cours du temps...

Un univers homogène et isotrope?

Principe cosmologique

Distribution des radiosources : homogène et isotrope

Principe cosmologique: un fond de rayonnement fossile isotrope!

Le principe cosmologique

L'Univers est homogène et isotrope... hypothèse valide ... mais aux très grandes échelles (>>100 Mpc)

L'univers est homogène et isotrope et conserve cette propriété au cours du temps

L'univers à une courbure constante et sa métrique s'écrit:

$$ds^{2} = c^{2}dt^{2} - R^{2}(t)\left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}\right)$$

où *k*=0,+1,-1

 $R^{2}(t)$ est un facteur d'échelle global de la métrique spatiale.

• C'est la métrique de Friedmann-Roberston-Walker (FRW)

Propriétés de la métrique FRW

- univers à courbure constante,
- 3 courbures possibles

$$ds^{2} = c^{2}dt^{2} - R(t)^{2} \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2} \right) \right]$$

$$\begin{cases} k = 0 & dl^2 = R(t)^2 \left(dr^2 + r^2 d\Omega^2 \right) \\ k = 1 & dl^2 = R(t)^2 \left(\frac{dr^2}{1 - r^2} + r^2 d\Omega^2 \right) = R(t)^2 \left(d\chi^2 + \sin^2 \chi d\Omega^2 \right) \\ k = -1 & dl^2 = R(t)^2 \left(\frac{dr^2}{1 + r^2} + r^2 d\Omega^2 \right) = R(t)^2 \left(d\chi^2 + \sin^2 \chi d\Omega^2 \right) \end{cases}$$

Conséquences du Principe Cosmologique: loi de Hubble

$$d = cdt \rightarrow d_{pr} = \int_0^r \frac{R(t)dr'}{\sqrt{1 - kr'^2}} = R(t)f(r) \qquad f(r) = Arcsin(r) \ si \ k = +1$$

$$r \qquad si \ k = 0$$

$$Argsh(r) \ si \ k = -1$$

$$v_r = \frac{\mathrm{d}d_{pr}(t)}{\mathrm{d}t} = \dot{R}(t)f(r) = \dot{R}(t)\frac{d_{pr}}{R(t)} = H(t)d_{pr} \qquad \dot{R}(t)/R(t) = H(t)$$

H(t) est le facteur d'expansion ou paramètre de Hubble

La loi de Hubble est une conséquence directe du Principe Cosmologique

Conséquences du Principe Cosmologique: redshift

• Décalage spectral d'une onde observée au temps t_0 et émise au temps t_e

• Les photons suivent des géodésiques $ds^2=0 \rightarrow$

$$z = \frac{\lambda_0 - \lambda_e}{\lambda_e}$$

 $R(t_0)$

1 + z =

$$\int_{t_e}^{t_0} \frac{cdt}{R(t)} = \int_0^r \frac{dr}{\sqrt{1 - kr^2}}$$

 \rightarrow pour deux maxima consécutifs de l'onde on a:

 $\Delta t_0 / \Delta t_e = l + z$

$$\int_{t_e}^{t_0} \frac{cdt}{R(t)} = \int_0^r \frac{dr}{\sqrt{1 - kr^2}} = \int_{t_e + \delta t_e}^{t_0 + \delta t_0} \frac{cdt}{R(t)}$$

$$\int_{t_e+\delta t_e}^{t_0+\delta t_0} \frac{cdt}{R(t)} - \int_{t_e}^{t_0} \frac{cdt}{R(t)} = \Phi(t_0+\delta t_0) - \Phi(t_e+\delta t_e) - \Phi(t_0) + \Phi(t_e) = \Phi'(t_0)\delta t_0 - \Phi'(t_e)\delta t_e = 0$$

$$\longrightarrow \qquad \frac{\delta t_e}{R(t_e)} - \frac{\delta t_0}{R(t_0)} = 0 \qquad \longrightarrow \qquad \nu_e R(t_e) = \nu_0 R(t_0) \qquad \longrightarrow \qquad \frac{R(t)}{\lambda_e} = \frac{R(t_0)}{\lambda_0}$$

Dilatation du temps

Conséquences du Principe Cosmologique:

dilatation des durées

Dilatation des courbes de lumière des SN

Equations d'Einstein

Postulats d'Einstein sur les propriétés du tenseur impulsion-énergie

• Construire une relation entre matière-énergie et métrique

• Construire un terme d'impulsion-énergie (T_{ij}) qui ne dépende que des dérivées premières et secondes du tenseur métrique: le plus simple=relation linéaire.

- L'impulsion-énergie doit vérifier les lois de conservation
- Aux limites, on doit retrouver l'équation de Poisson

Equations d'Einstein

Des équations d'Einstein aux équations de Friedmann

$$G_{ik} = R_{ik} - \frac{1}{2}g_{ik}R = \frac{8\pi G}{c^4}T_{ik}$$

Dérivation des équations de Freidmann: Modèles d'univers homogènes et isotropes

- 1. Calculer toutes les composantes non nulles des tenseurs métrique, de Ricci, etc...
- 2. Séparer les composantes spatiales et temporelle... \rightarrow

→ Equations de Friedmann

$$\begin{cases} 2\frac{\ddot{R}(t)}{R(t)} + \frac{\dot{R}(t)^2 + kc^2}{R(t)^2} = \frac{8\pi G}{c^2}T_1^1 = \frac{8\pi G}{c^2}T_2^2 = \frac{8\pi G}{c^2}T_3^3 \\ \frac{\dot{R}(t)^2 + kc^2}{R(t)^2} = \frac{8\pi G}{3c^2}T_0^0 \end{cases}$$

3. Déterminer le tenseur impulsion-énergie

$$T_{ij}$$
?

Le tenseur énergie-impulsion

• L'univers est homogène et isotrope

 \rightarrow la distribution de ses composantes aussi....

→ les « gaz » sont conformes à l 'hypothèse du fluide parfait: Pas de dissipation: ni propagation de chaleur, ni viscosité, ni diffusion

Le fluide est, et reste, isotrope dans son repère au repos

 \rightarrow son tenseur énergie-impulsion ne contient aucun termes de gradient (de vitesse, de température, de densité, etc...).

• $T_{\mu\nu}$ est diagonal et est complètement défini par sa densité d'énergie ρ et sa pression P

 \rightarrow Sa forme dans un repère au repos doit donc être:

$$T_{\theta\theta} = \rho \ c^2 \ et \ T_{ii} = -P$$

Equations de Friedmann

$$\begin{cases} 2\frac{\ddot{R}(t)}{R(t)} + \frac{\dot{R}(t)^2 + kc^2}{R(t)^2} = \frac{8\pi G}{c^2}T_1^1 = \frac{8\pi G}{c^2}T_2^2 = \frac{8\pi G}{c^2}T_3^3 \\ \frac{\dot{R}(t)^2 + kc^2}{R(t)^2} = \frac{8\pi G}{3c^2}T_0^0 \end{cases}$$

$$T_{\theta\theta} = \rho \ c^2 \ et \ T_{ii} = -P$$

$$\left\{ \begin{array}{ll} \ddot{R}=-\frac{4\pi G}{3}\left(\rho+\frac{3P}{c^2}\right)R & (a)\\ \dot{R}^2+kc^2=\frac{8\pi G}{3}\rho R^2 & (b) \end{array} \right. \label{eq:R}$$

Expansion et densité critique

$$\begin{cases} \ddot{R} = -\frac{4\pi G}{3} \left(\rho + \frac{3P}{c^2}\right) R & (a) \\ \dot{R}^2 + kc^2 = \frac{8\pi G}{3} \rho R^2 & (b) \end{cases}$$

$$\left(\frac{\dot{R}}{R_0}\right)^2 - \frac{8\pi}{3} G\rho \left(\frac{R}{R_0}\right)^2 = -\frac{kc^2}{R_0^2}$$
Exercitique: $\rho_{0c} = \frac{3H_0^2}{8-G}$

Densité critique:
$$\rho_{0c} = \frac{3\pi_0}{8\pi G}$$

$$\rho_{0c} = 1.88 \ 10^{-29} \ h^{-2} \ \text{g cm}^{-3}$$

Facteur d'échelle en fonction du facteur d'expansion et du paramètre de densité

$$\left(\frac{\dot{R}}{R_0}\right)^2 - \frac{8\pi}{3}G\rho\left(\frac{R}{R_0}\right)^2 = -\frac{kc^2}{R_0^2}$$

$$\left(\frac{\dot{R}}{R_0}\right)^2 - \frac{8\pi G}{3}\rho \left(\frac{R}{R_0}\right)^2 = H_0^2 \left(1 - \Omega_0\right)$$

Paramètre de densité:

$$\Omega_0 = \frac{\rho_0}{\rho_{0c}}$$

Equation d'état: forme de la pression

Pour un fluide parfait, $P(\rho)$ est de la forme:

$$P = \omega \rho c^2$$
 avec $0 < \omega < 1$

• $\omega = 1/3$: rayonnement

• $\omega = 0$: « univers poussière » . Correspond à l'univers actuel car pour les composants dominants $v^2/c^2 <<1$

• ω = -1 : champ additionnel = constante cosmologique

Evolution de la densité: l'univers a connu plusieurs époques

Supposons que :

 $P = \omega \rho c^2$ avec $0 \le \omega \le 1$ et indépendant du temps

Les équations de Friedmann impliquent que:

$$d(\rho R^{3}) = -\frac{3P}{c^{2}}R^{2}dR \qquad \Rightarrow \qquad R^{3}d\rho + 3R^{2}\rho dR = -3\rho\omega R^{2}dR$$

$$\Rightarrow \qquad d\left[\rho R^{3(1+\omega)}\right] = 0 \qquad \Rightarrow \qquad \rho R^{3(1+\omega)} = Cte = \rho_{0}R_{0}^{3(1+\omega)}$$

$$\rho_{i} = \rho_{0i}\left(1+z\right)^{3(1+\omega_{i})}$$

Evolution de la densité: l'univers à connu plusieurs époques

Modèles à courbure nulle

Pour un fluide composé de plusieurs composantes on a:

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G}{3} \sum_i \rho_i - \frac{k}{R^2} \,.$$

Donc pour des univers à courbure nulle:

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{H_0^2}{\rho_{0c}} \sum_i \rho_i \ ,$$

Compte tenu de la loi de conservation précédente:

$$\rho_i = \rho_{0i} \left(1 + z \right)^{3(1+\omega_i)};$$

Soit:

$$\left(\frac{H(z)}{H_0}\right)^2 = \sum_{i} \frac{\rho_{0i}}{\rho_{0c}} (1+z)^{3(1+\omega_i)}$$

Modèles à courbure nulle

$$\left(\frac{H(z)}{H_0}\right)^2 = \sum_i \Omega_{0i} \left(1+z\right)^{3(1+\omega_i)}$$

→ La dynamique de l'univers s'exprime en fonction de H(z) et des contributions à la densité de matière (*m*), des photons (γ), des neutrinos (*v*), etc...et d'une composante homogène (X)

$$\left(\frac{H(z)}{H_0}\right)^2 = \Omega_{0m} \left(1+z\right)^3 + \Omega_{0\gamma} \left(1+z\right)^4 + \Omega_{0X} \left(1+z\right)^{3(1+\omega_X)}$$

 \rightarrow à z=1000, la contribution de l'énergie sombre n'est pas dominante

Facteur d'échelle des d'univers de Friedmann

Modèles à courbure nulle

$$\left(\frac{H(z)}{H_0}\right)^2 = \sum_i \Omega_{0i} (1+z)^{3(1+\omega_i)} .$$

La dynamique de l'univers peut être exprimée en fonction de H(z) et des contributions à la densité de matière (*m*), des photons (γ), éventuellement des neutrinos (v) et d'une composante homogène sans fluctuations (X)

$$\left(\frac{H(z)}{H_0}\right)^2 = \Omega_{0m} (1+z)^3 + \Omega_{0\gamma} (1+z)^4 + \Omega_{0X} (1+z)^{3(1+\omega_X)}$$

Paramètres cosmologiques à déterminer

- Description de la géométrie et du contenu de l'Univers:
 - H_o : constante de Hubble
 - Ω_k : courbure de l'Univers ($\Omega_{totale} = 1 \Omega_k$)
 - Ω_{Λ} : constante cosmologique
 - Ω_w : contenu en "énergie sombre" (autre que $\Omega_\Lambda,$ qui correspondrait à w=-1)
 - Ω_b : fraction de matière baryonique
 - Ω_m : fraction de matière totale (baryon, matière noire chaude et/ou froide)
 - Ω_c : fraction de matière noire froide
 - Ω_{γ} : fraction de photons
 - Ω_{ν} : fraction de neutrinos
 - $-~\omega$: rapport P/ρ caractérisant l'équation d'état de l'énergie sombre ($\omega=-1$ pour une constante cosmologique)
 - $-~\omega_1={\rm d}\omega/{\rm d}z$: paramétrisation de la dépendance en redshift (temporelle) de ω (dans ce cas: $\omega\approx\omega_0+\omega_1(z)$
 - ${\rm M}_{\nu}$: somme des masses des composantes de neutrinos
 - N_{ν} : nombre d'espèces de neutrinos
- Description astrophysique du milieu
 - τ : profondeur optique de re-ionisation à la période du découplage
 - $\ b$: facteur de biais linéaire
- Description de la physique de l'Univers primordiale
 - $-\ C_{10}$: normalisation du spectre de puis sance des fluctuations de densité initiales
 - $-\ n_s$: indice de la composante scalaire du spectre du puis sance des fluctuations
 - $-\ n_T$: indice de la composante tensorielle du spectre du puissance des fluctuations
 - $-\ r$: rapport des amplitudes scalaires et vectorielles
 - $-\alpha={\rm dln}n_s/{\rm dln}k:$ running spectral index caractérisant l'évolution de l'indice du spectre scalaire en fonction de l'échelle.
 - $-t_0$: age de l'Univers

Les paramètres cosmologiques:

 Une vingtaine de paramètres à déterminer

- Des dégénérescences entre paramètres

Comment déterminer des paramètres cosmologiques?

- Observer des traceurs de l'histoire et des propriétés de l'expansion (distance, volume, luminosité ou dimension, apparente, histoire thermique, abondance)
- Déterminer des propriétés intrinsèques des objets ou du milieu intergalactique (dimension, densité, masse des systèmes, état d'ionisation)
- Observer des traceurs de la croissance ou des propriétés des structures
- Utiliser des méthodes et observations indépendantes: erreurs systématiques et levée de dégénérescences.

Propriétés des structures et paramètres cosmologiques

Le fond diffus cosmologique fossile: un corps noir parfait

Détermination des paramètres cosmologiques: la densité de rayonnement

$$\rho_{CMB} = \rho_{\gamma}c^2 = c^2 \int_0^\infty \rho_{\gamma}(\nu)\mathrm{d}\nu = c^2 \int_0^\infty \frac{8\pi h\nu^3}{\exp\left(\frac{h\nu}{k_B T_{\nu}}\right) - 1}\mathrm{d}\nu$$

$$\rho_{CMB} = \frac{\sigma T_0^4}{c^2} = 4.8 \times 10^{-34} \text{ g.cm}^{-3} ,$$

$$n_{CMB} = \int \frac{\rho_{\gamma}(\nu)}{h\nu} d\nu \approx 0.4 \frac{\sigma}{k_B} T^3 = 20.4 T^3$$

$$428 \text{ Photons cm}^{-3}$$

Détermination des paramètres cosmologiques: la densité de rayonnement

Rappel:

$$\rho_{0c} = 1.88 \ 10^{-29} \ h^{-2} \ \text{g cm}^{-3}$$

Paramètre de densité de rayonnement

$$\Omega_{\gamma} = \frac{\rho_{CMB}}{\rho_{critic}}$$

$$\implies \Omega_{\gamma} = \frac{4.8 \ 10^{-34}}{1.88 \ 10^{-29} \ h^2} = 2.55 \times 10^{-5} \ h^{-2}$$
Détermination des paramètres cosmologiques: la densité de matière Ω_m par mesure de masse des systèmes

- Courbes de rotation des galaxies (galaxies spirales)
- Dynamique des systèmes gravitants: théorème du viriel (galaxies elliptiques, groupes et amas de galaxies)
- Dynamique du gaz X intra-amas : équilibre hydrostatique (groupes et amas de galaxies)
- Lentilles gravitationnelles (galaxies, groupes et amas de galaxies)
- Champ de vitesse des galaxies (toutes les galaxies)

Détermination des paramètres cosmologiques: la densité de matière Ω_m par mesure de masse des systèmes

- Courbes de rotation des galaxies (galaxies spirales)
- Dynamique des systèmes gravitants: théorème du viriel (galaxies elliptiques, groupes et amas de galaxies)
- Dynamique du gaz X intra-amas : équilibre hydrostatique (groupes et amas de galaxies)
- Lentilles gravitationnelles (galaxies, groupes et amas de galaxies)
- Champ de vitesse des galaxies (toutes les galaxies)

La déflection des rayons lumineux: un effet de « lentille gravitationnelle »

vers la terre

Un cas simple d'équations de l'optique gravitationnelle

Equation des lentilles Angle de déflexion $m{ heta}_s D_{os} + m{lpha} D_{ls} = m{ heta}_i D_{os} \; ,$ $lpha = (4G/c^2)(M/D_{ol} heta)$

Détermination de paramètres cosmologiques par la «masse lensing »

 θ_S déduit des équation des lentilles gravitationnelles

 $\theta_S = \theta_I + \frac{D_{LS}}{D_{OL} D_{OS}} \frac{4GM}{c^2 \theta_I} \; . \label{eq:theta_states}$

Masse déterminée directement

S'applique aux galaxies, aux groupes de galaxies, aux amas de galaxie

Anneaux d'Einstein

Einstein Ring Gravit	tational Lenses	Hubble Space Telescope = ACS		
	1700	6,		
J073728.45+321618.5	J095629.77+510006.6	J120540.43+491029.3	J125028.25+052349.0	
J140228.21+632133.5	J162746.44 005357.5	J163028.15+452036.2	J232120.93-093910.2	
ASA, ESA, A. Bolton (Harva	rd-Smithsonian CfA), and the	e SLACS Team	STScI-PRC05-3	

$$M\left(\theta\right)=0.57\times10^{14}\,h^{-1}\,M_{\odot}\left(\frac{\theta}{30^{\circ}}\right)\left(\frac{\sigma}{100\mathrm{km.scc^{-1}}}\right)^{2}$$

Contributions des objets de l'Univers à sa densité de matière-énergie

Composante/méthode	M/L	échelle	Ω_m
Voisinage solaire	5	1 kpc	$0.003 \ h^{-1}$
Cœur des galaxies elliptiques	10	$2 \mathrm{kpc}$	$0.007 h^{-1}$
Analyse virielle des galaxies ellitpiques	30	$10 \ \rm kpc$	$0.02 h^{-1}$
Courbe de rotation des galaxies spirales	30	$10 \ \rm kpc$	$0.02 \ h^{-1}$
Groupes de galaxies	200	$500 \ \rm kpc$	$0.13 \ h^{-1}$
Amas de galaxies	300	1Mpc	$0.20 \ h^{-1}$
Abondance de Baryons (nucléosynthèse)			$0.01 - 0.05 h^{-2}$
Composante stellaire	-		$0.0030 h^{-1}$
Gaz inter-galactique HI	20		$0.0004 - 0.010 h^{-1}$
Fond diffus cosmologique	- 0		$0.000023 h^{-2}$
Chute sur Virgo	-	$15 \mathrm{Mpc}$	0.1-0.4
Champs de vitesse		$20 \mathrm{Mpc}$	> 0.5

 \rightarrow 0.1 < Ω_0 < 0.5

Les anisotropies du fond de rayonnement fossile (Cosmic Microwave Background)

Origine des anisotropies primaires du CMB

 Les perturbations gravitationnelles (effet Sachs-Wolfe). Elles sont produites à l'émission de photons piégés dans des régions denses de la surface de dernière diffusion. Ces photons subissent un effet de décalage spectral gravitationnel pour s'extraire du champ de gravité des régions denses, ce qui produit une variation de température du corps noir:

$$\frac{\delta T}{T} = \frac{\Phi}{3c^2} \ . \label{eq:deltaT}$$

2. Les perturbations de vitesse (ou Doppler) produites par les mouvements du plamas à la surface de dernière diffusion. Elles engendrent des fluctuations de la forme

$$\frac{\delta T}{T} = \frac{\delta v}{c}$$

3. les perturbations adiabatiques produites par la compression du champ de rayonnement dans les régions de haute densité qui accroît sa température. L'accroissement de température retarde localement la recombinaison, qui se produit donc à un décalage spectral plus faible.

$$\frac{\delta T}{T} = \frac{\delta \rho}{\rho} = -\frac{\delta z}{1+z} \; . \label{eq:eq:star}$$

Les 3 effets n'affectent pas les mêmes échelles.

Les 3 effets dépendent des paramètres cosmologiques

Analyse des cartes d'anisotropie du CMB

$$\frac{\Delta T}{T} = \sum_{lm} a_{lm} Y_{lm} \left(\theta, \phi\right)$$

Décomposition des anisotropies en multipoles

Décomposition des cartes du CMB en composantes de multipoles

$$\frac{\Delta T}{T} = \sum_{lm} a_{lm} Y_{lm} \left(\theta, \phi\right)$$

$$T\left(\theta\right) = T_0 \left(1 - \frac{v^2}{c^2}\right)^{-1/2} \left(1 + \frac{v}{c}\cos\theta\right)$$

$$C_l = \frac{1}{2\pi} \left(\frac{H_0}{c}\right)^4 \int_0^\infty \ \frac{P(k)}{k^2} j_l^2 \left(2ck/H_0\right) \ \mathrm{d}k \ ,$$

Forme du spectre des anisotropies du CMB

Forme du spectre des anisotropies du CMB

*C*_l du CMB et paramètres cosmologiques

 $(\Delta T/T)_{\theta}$ ~ $[l(l+1)C_l/2\pi]^{1/2}$

 $l \sim 100^{\circ}/\theta$ $\theta=1' \sim 2 \text{ Mpc}$

WMAP7 (2011)

WMAP-7 (2011)

Les observations CMB éliminent un grand nombre de modèles cosmologiques!

Combiner observations et méthodes

	Class	Parameter	WMAP Seven-year ML ^b	WMAP+BAO+H0 ML
Cas d'un Λ CDM	Primary	$100\Omega_b h^2$	2.227	2.253
		$\Omega_c h^2$	0.1116	0.1122
		Ω_{Λ}	0.729	0.728
		ns	0.966	0.967
		τ	0.085	0.085
		$\Delta_{\mathcal{R}}^2(k_0)^{d}$	2.42×10^{-9}	2.42×10^{-9}
	Derived	σ_8	0.809	0.810
		H_0	$70.3 \mathrm{km s^{-1} Mpc^{-1}}$	70.4 km s ⁻¹ Mpc ⁻¹
		Ω_b	0.0451	0.0455
		Ω_c	0.226	0.226
		$\Omega_m h^2$	0.1338	0.1347
		Zreion ^e	10.4	10.3
		$t_0^{\rm f}$	13.79 Gyr	13.76 Gyr

Contraintes sur des univers à énergie noire

Curvature	Parameter	+BAO+ H_0	+BAO+ H_0 + $D_{\Delta t}^a$	+BAO+SN ^b
$\Omega_k = 0$	Constant w	-1.10 ± 0.14	-1.08 ± 0.13	-0.980 ± 0.053
$\Omega_k eq 0$	Constant w Ω_k	$\begin{array}{r} -1.44 \pm 0.27 \\ -0.0125 \substack{+0.0064 \\ -0.0067 \end{array}$	$\begin{array}{r} -1.39 \pm 0.25 \\ -0.0111 \substack{+0.0060 \\ -0.0063} \end{array}$	$-0.999^{+0.057}_{-0.056}$ $-0.0057^{+0.0067}_{-0.0068}$
		$+H_0+SN$	+BAO+ H_0 +SN	+BAO+ H_0 + $D_{\Delta t}$ +SN
$\Omega_k = 0$	$w_0 \\ w_a$	$\begin{array}{r} -0.83 \pm 0.16 \\ -0.80 \substack{+0.84 \\ -0.83} \end{array}$	$\begin{array}{r} -0.93 \pm 0.13 \\ -0.41 \substack{+0.72 \\ -0.71} \end{array}$	$\begin{array}{r} -0.93 \pm 0.12 \\ -0.38 \substack{+0.66 \\ -0.65} \end{array}$

IV. La cosmologie des 20 prochaines années

WMAP7 (2011)

Planck (2013)

Sonder les propriétés et la nature de la source de l'accélération de l'Univers

Diagramme de Hubble des SNIa

Conley et al 2011

L'expansion de l'Univers s'accélère

L''Univers avec de l'énergie sombre

Eventual collapse

Millenium simulations

Les sondes de l'énergie sombre

• **Supernovae SNIa** : La mieux testée, mesure de *H*(*z*). Besoin de procédures très fines de calibration, d'analyse des erreurs systématiques et de modèles d'explosion de SN.

• Oscillation acoustique des baryons (BAO): La moins critique en termes de systématiques, sensible aux effets du biais et les effets non-linéaires. Besoin de de millions de redshifts.

• Cisaillement gravitationnel (WL) et tomographie: La plus prometteuse et celle qui a le plus grand potentiel exploratoire (test gravitation). Contrôle des erreurs systématiques difficile.

Ce sont les objectifs des grands projets du futur, encore en discussion:

- Euclid = BAO+WL (tomographie)
- LSST: SNIa + WL
- Big BOSS: BAO

Généralisation : distorsion gravitationnelle faible

Simulation d'une image profonde avec le HST

Généralisation : distorsion gravitationnelle faible

Le même champ mais avec une lentille gravitationnelle modélisée par une sphère isotherme: 800 km/sec, z=0.3

Effet statistique: carte de distorsion

Champ de distorsion gravitationnelle =

carte de la distribution de la matière noire à différents redshifts:

= Exactement *le taux de croiissance des structures*

La mission Euclid: Cosmic shear et tomographie sonder *P*(*k*,*z*,*w*)

Colombi, Mellier 2001

La mission EUCLID (projet)

- Survey du ciel en visible très haute qualité d'image (WL), en infrarouge (bande) et en spectroscopie (BAO).
- 1.5 milliard de galaxies
- 50 millions de redshif
- Telescope de 1.2m+3 instruments
- Soyouz ST2-1B depuis la Guyanne vers L2 (M < 2160 kg).
- Lancement 2018 (si accepté)
- 6 ans de mission .

