Study of $A \le 6$ helium clusters using soft-core potentials

Mario Gattobigio, A. Kievsky, and M. Viviani

Erice, 13 Octobre 2011

Outline

METHOD

Non-Symmetrized HH

- Motivation
- Jacobi and Hyperspherical Coordinates
- HH properties Raynal-Revai and Kil'dyushov coefficients
- Hamiltonian (non)construction and diagonalization

Outline

METHOD

Non-Symmetrized HH

- Motivation
- Jacobi and Hyperspherical Coordinates
- HH properties Raynal-Revai and Kil'dyushov coefficients
- Hamiltonian (non)construction and diagonalization

APPLICATIONS

- Volkov Potential
 - Permutation symmetry
 - Symmetry breaking

Outline

METHOD

Non-Symmetrized HH

- Motivation
- Jacobi and Hyperspherical Coordinates
- HH properties Raynal-Revai and Kil'dyushov coefficients
- Hamiltonian (non)construction and diagonalization

APPLICATIONS

- Volkov Potential
 - Permutation symmetry
 - Symmetry breaking
- A ≤ 6 helium clusters
 - Soft-core Potential description
 - Three-body force
 - Efimov physics

Method

• Hyperspherical Harmonics as systematic expansion basis

• Hyperspherical Harmonics as systematic expansion basis

- © Difficulties in constructing A-particles basis functions with a given permutation symmetry
- 🙂 Difficulties to take care of

permutation-symmetry-breaking terms

- Hyperspherical Harmonics as systematic expansion basis
 - © Difficulties in constructing A-particles basis functions with a given permutation symmetry
 - 🙂 Difficulties to take care of

permutation-symmetry-breaking terms

 Hyperspherical Harmonics without precise permutation symmetry

- Hyperspherical Harmonics as systematic expansion basis
 - © Difficulties in constructing A-particles basis functions with a given permutation symmetry
 - 🙂 Difficulties to take care of

permutation-symmetry-breaking terms

- Hyperspherical Harmonics without precise permutation symmetry
 - © No need of symmetrization procedure
 - © Simpler matrix-element calculations
 - © Simpler permutation-breaking calculations
 - 🙁 Bigger basis set

- Hyperspherical Harmonics as systematic expansion basis
 - © Difficulties in constructing A-particles basis functions with a given permutation symmetry
 - 🙂 Difficulties to take care of

permutation-symmetry-breaking terms

- Hyperspherical Harmonics without precise permutation symmetry
 - © No need of symmetrization procedure
 - © Simpler matrix-element calculations
 - © Simpler permutation-breaking calculations
 - 🙁 Bigger basis set
- Method to avoid Hamiltonian construction
 - \bigcirc Hamiltonian as $\sum \prod$ (Sparse Matrices)
 - © Iterative Diagonalization (ex. Lanczos)
 - © Only action on a vector needed

Jacobi's coordinates – $A \rightarrow N = A - 1$

Kinetic Energy

Center of Mass

$$ec{X} = rac{1}{M}\sum_{i=1}^{A}m_iec{r}_i$$
 , $M = \sum_{i=1}^{A}m_i$

Jacobi's coordinates

$$\begin{aligned} \vec{x}_3 &= \vec{r}_2 - \vec{r}_1 \\ \vec{x}_2 &= \sqrt{\frac{4}{3}} \left(\vec{r}_3 - \frac{\vec{r}_1 + \vec{r}_2}{2} \right) \\ \vec{x}_1 &= \sqrt{\frac{3}{2}} \left(\vec{r}_4 - \frac{\vec{r}_1 + \vec{r}_2 + \vec{r}_3}{3} \right) \end{aligned}$$

Different choices for Jacobi's coordinates

$$\vec{x}_3 = \vec{r}_2 - \vec{r}_1$$
$$\vec{x}_2 = \frac{\vec{r}_4 + \vec{r}_3}{\sqrt{2}} - \frac{\vec{r}_2 + \vec{r}_1}{\sqrt{2}}$$
$$\vec{x}_1 = \vec{r}_4 - \vec{r}_3$$

Different choices for Jacobi's coordinates

Different choices for Jacobi's coordinates

$$\begin{aligned} \vec{x}_3 &= \vec{r}_2 - \vec{r}_1 \\ \vec{x}_2 &= \sqrt{\frac{4}{3}} \left(\vec{r}_3 - \frac{\vec{r}_1 + \vec{r}_2}{2} \right) \\ \vec{x}_1 &= \sqrt{\frac{3}{2}} \left(\vec{r}_4 - \frac{\vec{r}_1 + \vec{r}_2 + \vec{r}_3}{3} \right) \end{aligned}$$

$$\vec{x}_{3} = \vec{r}_{3} - \vec{r}_{1}$$
$$\vec{x}_{2} = \sqrt{\frac{4}{3}} \left(\vec{r}_{2} - \frac{\vec{r}_{1} + \vec{r}_{3}}{2} \right)$$
$$\vec{x}_{1} = \sqrt{\frac{3}{2}} \left(\vec{r}_{4} - \frac{\vec{r}_{1} + \vec{r}_{2} + \vec{r}_{3}}{3} \right)$$

 $\begin{aligned} x_3 &= \rho \cos \varphi_3 \\ x_2 &= \rho \sin \varphi_3 \cos \varphi_2 \\ x_1 &= \rho \sin \varphi_3 \sin \varphi_2 \end{aligned}$

 $x_3 = \rho \cos \varphi_3 \cos \varphi_2$ $x_2 = \rho \cos \varphi_3 \sin \varphi_2$ $x_1 = \rho \sin \varphi_3$

 $x_3 = \rho \cos \varphi_3 \cos \varphi_2$ $x_2 = \rho \cos \varphi_3 \sin \varphi_2$ $x_1 = \rho \sin \varphi_3$

Grand-Angular Momentum Λ_N^2

$$\Delta = \sum_{i=1}^{N} \nabla_{\mathbf{x}_{i}}^{2} = \left(\frac{\delta^{2}}{\delta\rho^{2}} + \frac{3N-1}{\rho}\frac{\delta}{\delta\rho} + \frac{\Lambda_{N}^{2}(\Omega_{N})}{\rho^{2}}\right)$$

Hyperspherical Harmonics Defining Equation

$$\Big(\Lambda_{N}^{2}(\Omega_{N}) + \mathcal{K}(\mathcal{K} + 3N - 2) \Big) \mathcal{Y}_{[\mathcal{K}]}(\Omega_{N}) = 0$$

Hyperspherical Harmonics Defining Equation

$$\Big(\Lambda_{N}^{2}(\Omega_{N}) + \mathcal{K}(\mathcal{K}+\mathsf{3}N-\mathsf{2}) \Big) \mathcal{Y}_{[\mathcal{K}]}(\Omega_{N}) = \mathsf{0}$$

Memory of the coordinates

$$\mathcal{Y}_{[K]}^{LM}(\Omega_{N}) \quad \text{depends on} \begin{cases} \text{Jacobi} & \mathcal{Y}_{[K]}(\overset{\circ}{\downarrow} \swarrow) \neq \mathcal{Y}_{[K]}(\overset{\circ}{\downarrow} \swarrow) \\ \text{Hyperspherical} & \mathcal{Y}_{[K]}(\overset{\circ}{\searrow}) \neq \mathcal{Y}_{[K]}(\overset{\circ}{\searrow}) \end{cases}$$

Hyperspherical Harmonics Defining Equation

$$\Big(\Lambda_{N}^{2}(\Omega_{N}) + \mathcal{K}(\mathcal{K}+3N$$
 - 2) \Big) \mathcal{Y}_{[\mathcal{K}]}(\Omega_{N}) = 0

Memory of the coordinates

$$\mathcal{Y}_{[\mathcal{K}]}^{\mathcal{LM}}(\Omega_{\mathcal{N}}) \quad \text{depends on} \begin{cases} \text{Jacobi} & \mathcal{Y}_{[\mathcal{K}]}(\tilde{j}) \neq \mathcal{Y}_{[\mathcal{K}]}(\tilde{j}) \\ \text{Hyperspherical} & \mathcal{Y}_{[\mathcal{K}]}(\tilde{j}) \neq \mathcal{Y}_{[\mathcal{K}]}(\tilde{j}) \end{cases}$$

Raynal-Revai

$$\mathcal{Y}_{[K]}(\mathbf{x}) = \sum_{K'} \mathcal{A}_{[K],[K']}^{(23)} \mathcal{Y}_{[K']}(\mathbf{x})$$

Kil'dyushov T-coefficients

$$\mathcal{Y}_{[K]}(\mathcal{V}) = \sum_{K'} \mathcal{T}_{[K],[K']} \mathcal{Y}_{[K']}(\mathcal{V})$$

$$V_{[K],[K']} = \langle \mathcal{Y}_{[K]}(\underline{Y_{[K]}}) | \sum_{i < j}^{A} V(r_{ij}) | \mathcal{Y}_{[K']}(\underline{Y_{[K']}}) \rangle = \underbrace{\mathcal{Y}_{[K]}}_{i < j} \langle \mathcal{Y}_{[K]} | \mathcal{Y}_{[K']} | \mathcal{Y}_{[K']} | \mathcal{Y}_{[K']} \rangle$$

$$V_{[K],[K']} = \langle \mathcal{Y}_{[K]}(\mathbf{x}_{i}) | \sum_{i < j}^{A} V(r_{ij}) | \mathcal{Y}_{[K']}(\mathbf{x}_{i}) \rangle = \frac{3}{2} \mathcal{Y}_{[K']}(\mathbf{x}_{i}) \rangle$$

- S Huge dimension of the basis
- S Huge Dense Matrix!!!

$$V_{[K],[K']} = \langle \mathcal{Y}_{[K]}(\underline{X}_{2}) | \sum_{i < j}^{A} V(r_{ij}) | \mathcal{Y}_{[K']}(\underline{X}_{2}) \rangle = \underbrace{\mathcal{Y}_{[K]}(\underline{X}_{2})}_{i < j < i} \rangle$$

Huge dimension of the basis
 Huge Dense Matrix!!!
 BUT !!!

$$V_{[K],[K']} = \langle \mathcal{Y}_{[K]}(\underline{X}_{2}) | \sum_{i < j}^{A} V(r_{ij}) | \mathcal{Y}_{[K']}(\underline{X}_{2}) \rangle = \underbrace{\mathcal{Y}_{[K]}(\underline{X}_{2})}_{i < j < i} \rangle$$

Huge dimension of the basis
Huge Dense Matrix!!!

BUT !!!

Set Huge but Sparse Matrix!!!

$$V_{[K],[K']} = \langle \mathcal{Y}_{[K]}(\mathbf{x}_{i}) | \sum_{i < j}^{A} V(r_{ij}) | \mathcal{Y}_{[K']}(\mathbf{x}_{i}) \rangle = \mathbf{y}_{i} \mathbf{y}_{i}$$

- S Huge dimension of the basis
- © Huge Dense Matrix!!!

BUT !!!

- Buge but Sparse Matrix!!!
- Sparse is Good!!!

$$V(r_{13}) = \underbrace{\overset{3}{\overbrace{}}}_{r_{13}} \underbrace{\overset{4}{\overbrace{}}}_{r_{23}}$$

Rotation (Transposition) Matrix

$$\boldsymbol{A}_{[K],[K']}^{(23)} = \int \boldsymbol{d}(\boldsymbol{y}_{[K]}^{*}) \boldsymbol{\mathcal{Y}}_{[K]}^{*}(\boldsymbol{y}_{[K']}^{*}) \boldsymbol{\mathcal{Y}}_{[K']}^{*}(\boldsymbol{y}_{[K']}^{*})$$

Rotation (Transposition) Matrix

$$\mathcal{A}_{[K],[K']}^{(23)} = \int d(\underline{k},\mathcal{V}_{[K]}^{*}(\underline{k},\mathcal{V}_{[K]}^{*}(\underline{k},\mathcal{V}_{[K']}^{*}(\underline{k},\mathcal{V}_{[K']}^{*}(\underline{k},\mathcal{V}_{[K']}^{*}(\underline{k},\mathcal{V}_{[K']}^{*})) = \begin{pmatrix} \mathbf{k} \\ \mathbf{k} \end{pmatrix}$$

Rotation (Transposition) Matrix

$$\mathcal{A}_{[K],[K']}^{(23)} = \int d(\dot{\boldsymbol{y}}_{[K]}) \mathcal{Y}_{[K]}^{*}(\dot{\boldsymbol{y}}_{[K]}) \mathcal{Y}_{[K']}(\dot{\boldsymbol{y}}_{[K']}) = \begin{pmatrix} \boldsymbol{y}_{[K']} \\ \boldsymbol{y}_{[K']} \end{pmatrix} = \begin{pmatrix} \boldsymbol{y}_{[K']} \end{pmatrix} = \begin{pmatrix} \boldsymbol{y}_{[K']} \\ \boldsymbol{y}_{[K']} \end{pmatrix} = \begin{pmatrix} \boldsymbol{y}_{[K']} \end{pmatrix} = \begin{pmatrix} \boldsymbol{y}_{[K']} \\ \boldsymbol{y}_{[K']} \end{pmatrix} = \begin{pmatrix} \boldsymbol{y}_{[K']$$

 V_{13} as Product of Sparse Matrices

Rotation (Transposition) Matrix

$$\mathcal{A}_{[K],[K']}^{(23)} = \int d(\underline{k}_{i}) \mathcal{Y}_{[K]}^{*}(\underline{k}_{i}) \mathcal{Y}_{[K']}^{*}(\underline{k}_{i}) \mathcal{Y}_{[K']}^{*}(\underline{k}_{i}) \mathcal{Y}_{[K']}^{*}(\underline{k}_{i}) = \begin{pmatrix} \mathbf{k}_{i} \\ \mathbf{k}_{i} \end{pmatrix}$$

 V_{13} as Product of Sparse Matrices

Always possible! Use Jacobi-adjacent transpositions

$$\sum_{1-2}^{3} A^{(23)} \cdot A^{(12)} \cdot A^{(23)} \cdot \sum_{1-2}^{3} A^{(23)} \cdot A^{(23)} \cdot A^{(23)} \cdot A^{(23)}$$

Three-body force

Hyper-central three-body force

$$V^{(3)} = \sum_{i < j < k} W(\rho_{ijk})$$
 with $\rho_{ijk}^2 = \frac{2}{3}(r_{ij}^2 + r_{jk}^2 + r_{ik}^2)$

~
Three-body force

Hyper-central three-body force

$$V^{(3)} = \sum_{i < j < k} W(\rho_{ijk})$$
 with $\rho_{ijk}^2 = \frac{2}{3}(r_{ij}^2 + r_{jk}^2 + r_{ik}^2)$

Three-body force

Hyper-central three-body force

$$V^{(3)} = \sum_{i < j < k} W(\rho_{ijk})$$
 with $\rho_{ijk}^2 = \frac{2}{3}(r_{ij}^2 + r_{jk}^2 + r_{ik}^2)$

Three-body force

Hyper-central three-body force

$$V^{(3)} = \sum_{i < j < k} W(\rho_{ijk})$$
 with $\rho_{ijk}^2 = \frac{2}{3}(r_{ij}^2 + r_{jk}^2 + r_{ik}^2)$

$$W(oldsymbol{
ho}_{ extsf{123}}) = \mathcal{T} \cdot \widetilde{W}(oldsymbol{
ho}_{ extsf{123}}) \cdot \mathcal{T}^{ extsf{t}}$$

Adapted Jacobi coordinates

$$a_{1}^{3} = A^{(12)} \cdot a_{1}^{3} \cdot A^{(12)}$$

$$W(\mathbf{\rho}_{124}) = \mathcal{A}^{(12)} \cdot \mathcal{T} \cdot \widetilde{W}(\mathbf{\rho}_{123}) \cdot \mathcal{T}^{\dagger} \cdot \mathcal{A}^{(12)}$$

- Use the full set Life is simpler!
 - Avoid the symmetrization step
 - Matrix elements easier to calculate
 - Simpler to introduce permutation-breaking terms

- Use the full set Life is simpler!
 - Avoid the symmetrization step
 - Matrix elements easier to calculate
 - Simpler to introduce permutation-breaking terms
- $A^{(i\,i+1)}$ and T potential-independents
 - Calculated once for all Library

- Use the full set Life is simpler!
 - Avoid the symmetrization step
 - Matrix elements easier to calculate
 - Simpler to introduce permutation-breaking terms
- $A^{(i\,i+1)}$ and T potential-independents
 - Calculated once for all Library

• Only calculate
$$V(r_{12}) = \int_{1}^{3} \sqrt{4}$$
 and $\widetilde{W}(\rho_{123}) = \int_{1}^{3} \sqrt{4}$

- Use the full set Life is simpler!
 - Avoid the symmetrization step
 - Matrix elements easier to calculate
 - Simpler to introduce permutation-breaking terms
- $A^{(i\,i+1)}$ and T potential-independents
 - Calculated once for all Library

• Only calculate
$$V(r_{12}) = \frac{3}{\sqrt{2}}$$
 and $\widetilde{W}(r_{12})$

• Do not construct the Hamiltonian!!

$$\mathcal{H} = \sum \left(\prod \text{Sparse Matrices}
ight)$$

- Use the full set Life is simpler!
 - Avoid the symmetrization step
 - Matrix elements easier to calculate
 - Simpler to introduce permutation-breaking terms
- $A^{(i\,i+1)}$ and T potential-independents
 - Calculated once for all Library

• Only calculate
$$V(r_{12}) = \frac{3}{\sqrt{2}}$$
 and $\widetilde{W}(\rho_{12})$

• Do not construct the Hamiltonian!!

$$\mathcal{H} = \sum \left(\prod \text{Sparse Matrices}
ight)$$

Only action on a vector (Iterative Diagonalization)

$$\vec{v}_{\text{out}} = H \cdot \vec{v}_{\text{in}}$$

Applications

Volkov's Potential

Mass parameter

$$\hbar^2/m = 41.47 \; extsf{Mev} \, extsf{fm}^2$$

• Potential $V(r) = E_1 e^{-r^2/R_1^2} + E_2 e^{-r^2/R_2^2}$

• $E_1 = 144.86$ Mev, $R_1 = 0.82$ fm, $E_2 = -83.34$ Mev, $R_2 = 1.6$ fm $70^{-0}_{-0}^{-0}_{$

Volkov's Potential

Mass parameter

$$\hbar^2/m = 41.47 \; extsf{Mev} \, extsf{fm}^2$$

• Potential $V(r) = E_1 e^{-r^2/R_1^2} + E_2 e^{-r^2/R_2^2}$ • $E_1 = 144.86$ Mev, $R_1 = 0.82$ fm, $E_2 = -83.34$ Mev, $R_2 = 1.6$ fm

• S-wave potential – only acts when $I_{ij} = 0$

Spectrum & Symmetries

Permutation of the A particles is a symmetry

$$[H, S_A] = 0$$

$$[H,S_A]=0$$

The Eigenvalues are organized according to irreps of S_A

Spectrum & Symmetries

Permutation of the A particles is a symmetry

$$[H,S_A]=0$$

Spectrum & Symmetries

Permutation of the A particles is a symmetry

$$[H,S_A]=0$$

$$[H,S_A]=0$$

$$-73.49 \text{ MeV} [6] = (1 \text{ level})$$

$$-122.78 \text{ MeV} [6] = (1 \text{ level})$$

$$(1 \text{ level})$$

$$[H, S_A] = 0$$

Spectrum & Symmetries

Permutation of the A particles is a symmetry

$$[H,S_A]=0$$

$$[H,S_A]=0$$

The Eigenvalues are organized according to irreps of S_A

 $[H, S_A] = 0$

The Eigenvalues are organized according to irreps of S_A ... or irreps of subgroups ...

 $[H, S_A] = 0$

The Eigenvalues are organized according to irreps of S_A ... or irreps of subgroups ...

Coulomb Interaction

 $[H, S_A] = 0$

The Eigenvalues are organized according to irreps of S_A ... or irreps of subgroups ...

Coulomb Interaction

 $[H, S_A] = 0$

The Eigenvalues are organized according to irreps of S_A ... or irreps of subgroups ...

Coulomb Interaction

Symmetry breaking

$$S_6
ightarrow S_2 \otimes S_4$$

 $[H, S_A] = 0$

The Eigenvalues are organized according to irreps of S_A ... or irreps of subgroups ...

Coulomb Interaction

Symmetry breaking

 $[H, S_A] = 0$

The Eigenvalues are organized according to irreps of S_A ... or irreps of subgroups ...

Coulomb Interaction

Symmetry breaking

K _{max}	N _{HH}	<i>E</i> ₀ (MeV)	<i>E</i> ₁ (MeV)	E ₂ (MeV)	E_3 (MeV)
		[6]	[6]	[51]	[4 2]
2	15	117.205	64.701	62.513	61.142
4	120	118.861	69.450	64.277	62.015
6	680	120.345	70.544	66.268	63.377
8	3045	121.738	71.443	67.280	64.437
10	11427	122.317	71.923	68.371	65.354
12	37310	122.597	72.477	69.029	65.886
14	108810	122.711	72.822	69.531	66.201
16	288990	122.752	73.101	69.842	66.360
18	709410	122.768	73.284	70.051	66.437
20	1628328	122.774	73.407	70.189	66.474
22	3527160	122.776	73.485	70.283	66.491
SVM*					66.25

* K. Varga and Y. Suzuki, Phys. Rev. C 52, 2885 (1995)

All-wave Volkov for A = 6, $L^{\pi} = 0^+$

All-wave Volkov - Summary

0.546 MeV [2] 0+	0 500 MeV [3] 0 ⁺			
A = 2	0.577 MC V [5] 0			
	8.465 MeV [3] 0 ⁺	8.562 MeV [4] 0 ⁺		
	A = 3	10.406 MeV [3 1] 1 ⁻		
			28.72 MeV [4 1] 0 ⁺	
		30.418 MeV [4] 0+		
		A = 4	31.72 MeV [5] 0+	
			43.03 MeV [4 1] 1 ⁻	
			68 28 MeV [5] 0+	66.49 MeV [4 2] 0 ⁺
				70.28 MeV [5 1] 0 ⁺
			A = 5	73.49 MeV [6] 0 ⁺
				122.78 MeV [6] 0 ⁺

A = 6

S-wave Volkov - "Physics"

28.43 MeV 0⁺

⁴He

33.02 MeV 0⁺

⁶He

Helium Potential

Helium-Helium interaction

 ℓ_{vdW} ≈ 10a.u.
 r₀ ≈ 14 a.u.
 a₀ ≈ 190 a.u.
 E₂ ≈ -1.30 mK

Helium Potential

Helium-Helium interaction

 ℓ_{vdW} ≈ 10a.u.
 r₀ ≈ 14 a.u.
 a₀ ≈ 190 a.u.
 E₂ ≈ -1.30 mK

Efimov physics

$$r_0/a_0 \approx (\hbar^2/2ma_0^2 - E_2)/E_2$$

 $E_3^{(0)} \simeq -126 \text{ mK} \text{ and } E_3^{(1)} \simeq -2.3 \text{ mK}$

Helium Potential

Helium-Helium interaction

 ℓ_{vdW} ≈ 10a.u.
 r₀ ≈ 14 a.u.
 a₀ ≈ 190 a.u.
 E₂ ≈ -1.30 mK

Efimov physics

$$r_0/a_0 \approx (\hbar^2/2ma_0^2 - E_2)/E_2$$

 $E_3^{(0)} \simeq -126 \text{ mK} \text{ and } E_3^{(1)} \simeq -2.3 \text{ mK}$

Strong short-range repulsion

- Difficult to treat with orthogonal basis
- Difficult to have converged excited states

Soft Two-Body Gaussian Potential

• Effective low-energy gaussian soft potential

$$V(r)=V_0\ \mathrm{e}^{-r^2/R^2}$$

Regularized contact interaction

Soft Two-Body Gaussian Potential

• Effective low-energy gaussian soft potential

$$V(r)=V_0\ \mathrm{e}^{-r^2/R^2}$$

- Regularized contact interaction
- Fix V₀ to reproduce one low-energy LM2M2 datum
- Use the cut-off R to reproduce a second datum

			Soft-Gaussian	LM2M2
V₀ = −1.227 K	\Rightarrow	<i>a</i> ₀ (a.u.)	189.95	189.05
R = 10.03 a.u.		r ₀ (a.u.)	13.85	13.84
		<i>E</i> ₂ (mK)	-1.296	-1.302

Soft Two-Body Gaussian Potential

• Effective low-energy gaussian soft potential

$$V(r) = V_0 e^{-r^2/R^2}$$

- Regularized contact interaction
- Fix V₀ to reproduce one low-energy LM2M2 datum
- Use the cut-off R to reproduce a second datum

			Soft-Gaussian	LM2M2
<i>V</i> ₀ = -1.227 K	⇒	<i>a</i> ₀ (a.u.)	189.95	189.05
R = 10.03 a.u.		r ₀ (a.u.)	13.85	13.84
		<i>E</i> ₂ (mK)	-1.296	-1.302

• Problem in the three-body sector

	Soft-Gaussian	LM2M2
E ₃ ⁽⁰⁾ (mK)	-150.4	-126.4
$E_{3}^{(1)}$ (mK)	-2.467	-2.265

Soft Hyper-Central Three-Body Potential

• Effective low-energy three-body-soft potential

$$W(\rho_{ijk}) = W_0 e^{-2\rho_{ijk}^2/\rho_0^2}$$

Regularized three-body-contact interaction
Soft Hyper-Central Three-Body Potential

• Effective low-energy three-body-soft potential

$$W(\rho_{ijk}) = W_0 e^{-2\rho_{ijk}^2/\rho_0^2}$$

Regularized three-body-contact interaction

potential	$E_{3b}^{(0)}$ (mK)	$E_{3b}^{(1)}$ (mK)
LM2M2	-126.4	-2.265
gaussian	-150.4	-2.467
(<i>W</i> ₀ [K], ρ ₀ [a.u.])		
(306.9,4)	-126.4	-2.283
(18.314,6)	-126.4	-2.287
(4.0114,8)	-126.4	-2.289
(1.4742, 10)	-126.4	-2.292
(0.721, 12)	-126.4	-2.295
(0.422,14)	-126.4	-2.299
(0.279, 16)	-126.4	-2.302

• Soft Potential sum of two- and three-body terms

ĸ	$E_{4b}^{(0)}$ [mK]	$E_{4b}^{(1)}$ [mK]	$E_{5b}^{(0)}$ [mK]	$E_{5b}^{(1)}$ [mK]	$E_{6b}^{(0)}$ [mK]	$E_{6b}^{(1)}$ [mK]
0	538.93	4.557	1288.1	365.1	2293.8	1109.9
2	538.93	4.557	1288.1	365.1	2293.8	1109.9
4	561.69	40.29	1319.6	460.4	2331.8	1237.3
6	566.68	67.47	1324.4	497.6	2336.6	1273.0
8	568.21	84.22	1326.1	527.0	2338.4	1307.7
10	568.58	96.04	1326.5	542.7	2338.7	1323.1
12	568.73	105.30	1326.6	554.0	2338.8	1334.4
14	568.77	111.17	1326.6	561.0	2338.9	1340.9
16	568.78	115.58	1326.6	565.9	2338.9	1345.3
18	568.79	118.78	1326.6	569.3	2338.9	1348.2
20	568.79	121.20	1326.6	571.8	2338.9	1350.2
22	568.79	122.98	1326.6	573.6	2338.9	1351.6
24	568.79	124.38	1326.6	574.9		
26	568.79	125.47				
28	568.79	126.33				
30	568.79	127.02				
32	568.79	127.57				
34	568.79	128.02				
36	568.79	128.40				
38	568.79	128.70				
40	568.79	128.96				
Lewerenz, JCP 106 , 4596 (1997)	558.4		1302.2		2319.4	
Blume&Greene, JCP 112 , 8053 (2000)	559.7	132.6	1309.3	597.1	2329.4	1346.7

• Ground and Excited states for ${}^{4}\text{He}_{A}$ with $A \leq 6$

• Ground and Excited states for ${}^{4}\text{He}_{A}$ with $A \leq 6$

• The range p_0 is not independent ...

 $\rho_0^2/2 \ge R^2 \quad \Rightarrow \quad \rho_0 \gtrsim 14 \text{ a.u.}$

- Two + Three Soft potential for A ≤ 6 Helium clusters
- $r_0/a_0 \approx 7\%$

- Two + Three Soft potential for $A \leq 6$ Helium clusters
- $r_0/a_0 \approx 7\%$
- For (each?) Efimov state
 - Two Four-Body states
 - Two Five-Body states
 - Two Six-Body states
- Second 4 < A < 6 excited state above the threshold and not bosonic!

- Two + Three Soft potential for A ≤ 6 Helium clusters
- $r_0/a_0 \approx 7\%$
- For (each?) Efimov state
 - Two Four-Body states
 - Two Five-Body states
 - Two Six-Body states
- Second 4 < A < 6 excited state above the threshold and not bosonic!
- Universal ratios

ρ ₀ [a.u.]	$E_{4b}^{(0)}/E_{3b}^{(0)}$	$E_{4b}^{(1)}/E_{3b}^{(0)}$	$E_{5b}^{(0)}/E_{3b}^{(0)}$	$E_{5b}^{(1)}/E_{4b}^{(0)}$	$E_{6b}^{(0)}/E_{3b}^{(0)}$	$E_{6b}^{(1)}/E_{5b}^{(0)}$
12	4.47	1.01	10.33	1.001	18.12	1.005
14	4.50	1.02	10.50	1.011	18.50	1.018
16	4.54	1.03	10.70	1.021	19.06	1.029

Method

Method

• Hyperspherical Harmonics is a good basis set

Method

- Hyperspherical Harmonics is a good basis set
 - How to use it?
 - ✓ Do not symmetryze the basis set!

Method

- Hyperspherical Harmonics is a good basis set
 - How to use it?
 - ✓ Do not symmetryze the basis set!
 - What about the Huge-Basis Dimension?
 - Do not contruct the Hamiltonian!

Method

- Hyperspherical Harmonics is a good basis set
 - How to use it?
 - Do not symmetryze the basis set!
 - What about the Huge-Basis Dimension?
 - Do not contruct the Hamiltonian!

MG, A. Kievsky, M. Viviani, and P. Barletta, PRA **79**, 032513 (2009) MG, A. Kievsky, and M. Viviani, PRC **83**, 024001 (2011)

Method

- Hyperspherical Harmonics is a good basis set
 - How to use it?
 - ✓ Do not symmetryze the basis set!
 - What about the Huge-Basis Dimension?
 - Do not contruct the Hamiltonian!

MG, A. Kievsky, M. Viviani, and P. Barletta, PRA **79**, 032513 (2009) MG, A. Kievsky, and M. Viviani, PRC **83**, 024001 (2011)

Application

Method

- Hyperspherical Harmonics is a good basis set
 - How to use it?
 - ✓ Do not symmetryze the basis set!
 - What about the Huge-Basis Dimension?
 - Do not contruct the Hamiltonian!

MG, A. Kievsky, M. Viviani, and P. Barletta, PRA **79**, 032513 (2009) MG, A. Kievsky, and M. Viviani, PRC **83**, 024001 (2011)

Application

Helium Cluster up to A=6 - Excited states too!

Method

- Hyperspherical Harmonics is a good basis set
 - How to use it?
 - ✓ Do not symmetryze the basis set!
 - What about the Huge-Basis Dimension?
 - Do not contruct the Hamiltonian!

MG, A. Kievsky, M. Viviani, and P. Barletta, PRA **79**, 032513 (2009) MG, A. Kievsky, and M. Viviani, PRC **83**, 024001 (2011)

Application

Helium Cluster up to A=6 - Excited states too!
How to deal with hard-core potentials?
Use soft two- and three-body forces!

Method

- Hyperspherical Harmonics is a good basis set
 - How to use it?
 - ✓ Do not symmetryze the basis set!
 - What about the Huge-Basis Dimension?
 - Do not contruct the Hamiltonian!

MG, A. Kievsky, M. Viviani, and P. Barletta, PRA **79**, 032513 (2009) MG, A. Kievsky, and M. Viviani, PRC **83**, 024001 (2011)

Application

- Helium Cluster up to A=6 Excited states too!
 - How to deal with hard-core potentials?
 - Use soft two- and three-body forces!
 - Universality in A > 3 bound states

MG, A. Kievsky, and M. Viviani, arXiv:1106.3853, accepted PRA