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Outline:

   The response function  S(q,)

   S(q,) in the non relativistic framework 

   an ab initio method to calculate it (including the     
     continuum exactly)

   Results on frame dependence

   How far in q is the n.r. calculation  reliable?
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In quantum field theory or  many-body theory 

it is called 

 Correlation Function or  Two-Point Function  

 F ( t ) =   †t )  (t =0)  |  0 >

A familiar object: 

 t  = real time 
t) =  field operators or creation/annihilation  operators in  

Heisenberg representation 
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∫ e   - i  t ω F(t) dt   =

= <  0 |  †              1              | 0 > 
 

    its Fourier Transform:

called 

 Linear response or  Green Function  

[ ω  – (H – E
0
) + i 

ε ]
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  Spectral representation of  :

                           | <  n |    | 0 > |2

                      [ ω  – (E
n
 – E

0
) + i ε ]  


n

  ( H | n >  = E
n
 | n > )

  - - ππ−1−1ImIm  ==
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  - - ππ−1−1ImIm  ==

A scattering A scattering observableobservable: : 
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A very common  example:
perturbation induced inclusive reactions 

  

q > ω q = ω

| 0 >

| n >

| 0 >

| n >

(γ, Ζ0 , W±,...)*   
 γ

|i>

|f>

en...

e'''n'...

detector
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A very common  example:
perturbation induced inclusive reactions 

  

q > ω q = ω

| 0 >

| n >

| 0 >

| n >

(γ, Ζ0 , W±,...)*   
 γ

|i>

|f>

en...

e'''n'...

detector | n > can be in the continuum 
because the system can break into 

different channels !!!
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In perturbation induced inclusive reactions 

cross sections are proportional to :

S(q,S(q,) =) =

The observable The observable S(S(qq,,))::  

  - - ππ−1−1ImIm  
depends on q
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t is the real time, however,  for imaginary time  it = τ
one can proove that 

1)  F* ( τ  )  =  F( τ )   i.e.  F( τ ) is real 
 

2) F ( τ ) =  ∫ e   -  τ ω
 Im  dω 

i.e.   F(τ) is the Laplace transform of   S(q, ω)

First remark: 

 F ( t ) =   †t )  (t =0)  |  0 >
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Then in order to obtain S(q,) one could calculate

F ( τ ) (Monte Carlo) 
and invert the Laplace transform

F ( τ ) =  ∫ e   -  τ ω
 Im   dω 
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                           | <  n |    | 0 > |2

                      [ ω  – (E
n
 – E

0
) + i ε ] 


n

  (H | n >  = E
n
 | n >)

second remark: 

remember the Spectral representation  
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             Im lim 


 
| <  n |  | 0 > |2

   ε  0→

(ω  – E
n0

 )2 +  ε2 ]


n 
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             Im lim 


 
| <  n |  | 0 > |2

   ε  0→

(ω  – E
n0

 )2 +  ε2 ]


n 

equivalent to represent the delta-function  

by a Lorentzian of width  

S(q,S(q,) =) =
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           


 
| <  n |  | 0 > |2

(ω  – E
n0

 )2 +  ε2 ]


n 
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Then in order to obtain S(q,) one could calculate  

    




as a function of  finite ε = Γ and extrapolate 

for Γ−−> 0  
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or, alternatively...
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Notice that:  
    

(ω  – E
n0

 )2 +  Γ2 ]


n 

 
Γ | <  n |  | 0 > |2

∫   

    
[(ω

0 
− ω

 
)2+ Γ2 ]

Γ S(q,ω) 
dωω

0


i.e.  ω
0
    is the Lorentz transform of   S(q, ω)
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Then in order to obtain S(q, ) one could calculate

ω
0
 

and invert the Lorentz  transform

∫   

    
[(ω

0 
− ω

 
)2+ Γ2 ]

Γ S(q,ω) dωω
0

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It is well known that the numerical inversion of the Laplace Transform 
is a  (tremendous) ill-posed problem



G. Orlandini -  Workshop on the Dynamics of Critically Stable Quantum Few-Body Systems, Erice, Oct.9-15, 2011

It is well known that the numerical inversion of the Laplace Transform 
is a (tremendous) ill-posed problem

Φ
laplace

  S
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It is well known that the numerical inversion of the Laplace Transform 
is a (tremendous) ill-posed problem

Φ
laplace

  S
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It is well known that the numerical inversion of the Laplace Transform 
is a (tremendous) ill-posed problem

Φ
laplace

  S

​​​???
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The numerical inversion of the Lorentz  Transform is much more stable!

Φ
lorentz

  S
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​​​! ! !

Φ
lorentz

  S

The numerical inversion of the Lorentz  Transform is much more stable!
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The Lorentz Integral Transform The Lorentz Integral Transform (LIT)(LIT) method  method 

First proposed in
V. D. Efros, W. Leidemann and G. Orlandini, 
 Phys. Lett. B338, 130 (1994)

Topical Review:
V. D. Efros, W. Leidemann, G. Orlandini and N. Barnea 
“The Lorentz Integral Transform (LIT) method and its applications
 to perturbation induced reactions”

J. Phys. G: Nucl. Part. Phys. 34 (2007) R459-R528
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The Lorentz Kernel satisfies the  two essential requirements :

N.1. one can calculate  the integral transform

N.2 one is able to invert the transform, minimizing instabilities
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Illustration of requirement Illustration of requirement N.1:N.1:  
one can calculate the integral one can calculate the integral 

transformtransform
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a theorem  based on closure 
states that 

ω
0

Γ

where

Φ(ω
0
,Γ) =∫S (q, ω) L(ω, ω

0
,d 
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Closure  = 1

Proof of the theorem: Φ (ω
0
,Γ) =

where
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The LIT in practice:The LIT in practice:

is found solving for fixed Γ  and many ω
0
 

1.
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the overlap                        is calculated     

3.

2.

the transform is inverted



G. Orlandini -  Workshop on the Dynamics of Critically Stable Quantum Few-Body Systems, Erice, Oct.9-15, 2011

main point of the LIT :main point of the LIT :

Schrödinger-like equation with a source

S =  
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main point of the LIT :main point of the LIT :
Schrödinger-like equation with a source

The         solution is unique and has 

bound state asymptotic behavior

Theorem:



                 = ∫ [(ω−ω
0
)2+Γ2]−1 S(q,ω) dω   < ∞
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main point of the LIT :main point of the LIT :
Schrödinger-like equation with a source

one can apply bound state methods

The         solution is unique and has 

bound state asymptotic behavior

Theorem:


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The LIT methodThe LIT method
 reduces the reduces the continuumcontinuum problem to a  problem to a bound state bound state 

problemproblem
 needs  “needs  “onlyonly”  ”  a good method for a good method for bound statebound state  

calculations (FY, HH, NCSM, ...???)calculations (FY, HH, NCSM, ...???)
 has beenhas been benchmarked benchmarked in  systems   (A=2,3) where  in  systems   (A=2,3) where 

one can solve the Schroedinger equation in the one can solve the Schroedinger equation in the 
continuumcontinuum

 has been successfully applied for A=4,6,7has been successfully applied for A=4,6,7
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Some interesting  observables:Some interesting  observables:
The electron scattering cross section, in particular the 

Longitudinal R
L
( q, and Transverse R

T
( q,  )  response functions
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The electron scattering cross section, in particular the 
Longitudinal R

L
( q, and Transverse R

T
( q,  )  response functions

Charge 

density

S(q,S(q,) =) =

Some interesting  observables:Some interesting  observables:
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The electron scattering cross section, in particular the 
Longitudinal R

L
( q, and Transverse R

T
( q,  )  response functions

S(q,S(q,) =) =

Charge 

density
Current 

density J

Some interesting  observables:Some interesting  observables:



G. Orlandini -  Workshop on the Dynamics of Critically Stable Quantum Few-Body Systems, Erice, Oct.9-15, 2011

The electron scattering cross section, in particular the 
Longitudinal R

L
( q, and Transverse R

T
( q,  )  response functions

S(q,S(q,) =) =

Charge 

density
Current 

density J

The photoabsorption cross section, 

 q =  

Dipole 
operator D

Some interesting  observables:Some interesting  observables:
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one example where we have a 
“good” theoretical situation and 
a “very bad” experimental one
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Photodisintegration of 4He

Very confused 
experimental 

situation

Data: 
   (γ ,  n)  Berman et al. '80
                      +  
   (γ ,  p)  Feldman et al. '90

additional exp data: Nilsson (2005), Shima (2005)

Clear dependence 
of ab initio results

 on the potental
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How important are relativistic effects 
as q increases?
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One criteria to judge is the 
frame dependence of the results
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The electron scattering response functions 
in various frames
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 VARIOUS FRAMES:

LAB: initially  nucleons have momenta  p
i 
≅ 0

( in the quasi elastic regime the final momentum of the “active nucleon” p
f 
≅ q)
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 VARIOUS FRAMES:

LAB: initially  nucleons have momenta  p
i 
≅ 0

( in the quasi elastic regime the final momentum of the “active nucleon” p
f 
≅ q)

ANTI-LAB: initially  nucleons have momenta  p
i 
≅ −  q /A

 ( in q.e.  the final momentum of the “active nucleon” p
f 
≅ q (A-1)/A )

ANTI-LAB: initially  nucleons have momenta  p
i 
≅ −  q /A
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 VARIOUS FRAMES:

LAB: initially  nucleons have momenta  p
i 
≅ 0

( in the quasi elastic regime the final momentum of the “active nucleon” p
f 
≅ q)

ANTI-LAB: initially  nucleons have momenta  p
i 
≅ −  q /A

 ( in q.e.  the final momentum of the “active nucleon” p
f 
≅ q (A-1)/A )

BREIT: initially  nucleons have momenta  p
i 
≅ − q /2A 

( in q.e.  the final momentum of the “active nucleon”  p
f 
≅ q (2A-1)/2A ) 

ANTI-LAB: initially  nucleons have momenta  p
i 
≅ −  q /A
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 VARIOUS FRAMES:

LAB: initially  nucleons have momenta  p
i 
≅ 0

( in the quasi elastic regime the final momentum of the “active nucleon” p
f 
≅ q)

ANTI-LAB: initially  nucleons have momenta  p
i 
≅ −  q /A

 ( in q.e.  the final momentum of the “active nucleon” p
f 
≅ q (A-1)/A )

BREIT: initially  nucleons have momenta  p
i 
≅ − q /2A 

( in q.e.  the final momentum of the “active nucleon”  p
f 
≅ q (2A-1)/2A ) 

ANB: initially  nucleons have momenta  p
i 
≅ − q /2    

 ( in q.e.  the final momentum of the “active nucleon”  p
f 
≅ q /2  )

ANTI-LAB: initially  nucleons have momenta  p
i 
≅ −  q /A
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They are connected to the response functions 
in the LAB frame

( where they are measured ! ) 
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33HeHe
Longitudinal 

response of 3He

Large 
frame dependence!!!

V.Efros et al. PRC 72 (2005) 011002
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     Is there an easy way to cure it?
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 Is there an easy way to cure it?

use in each frame the kinematical inputs 
corresponding to  the 

quasi elastic  2-body assumption i.e.
p + (A-1)-system
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The relative momentum of 2 bodies p + (A-1) 
can be calculated in each frame
in a  relativistically correct way.

The relative kinetic energy  is then taken in its 
non relativistic  form  p2

rel
/ 2    (the input of a 

non relativistic dynamical calculation)
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Kinem. model
------------------>
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remark:remark:
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Of the 4 frames the ANB result is the less affected by 
the relativistically correct kinematical model.
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Kinem. model
------------------>
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Of the 4 frames the ANB result is the less affected by 
the relativistically correct kinematical model.
The reason is that in the ANB frame the momenta of 
the active particle are the smallest (about  q/2!).
Therefore the error on the  kinetic energy is the 
smallest:
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Of the 4 frames the ANB result is the less affected by 
the relativistically correct kinematical model.
The reason is that in the ANB frame the momenta of 
the active particle are the smallest (about  q/2!).
Therefore the error on the  kinetic energy is the 
smallest:         in fact, in general:
                       

 2 m     8 m3    

                            

p2        p4       

                             
      

T ≅ + ... ≅T             p2  

T        4 
m2
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Of the 4 frames the ANB result is the less affected by 
the relativistically correct kinematical model.
The reason is that in the ANB frame the momenta of 
the active particle are the smallest (about  q/2!).
Therefore the error on the  kinetic energy is the 
smallest:         in fact, in general:
                       

 2 m     8 m3    

                            

p2        p4       

                             
      

T ≅ + ... ≅T             p2  

T        4 
m2

ANB :
T               q2  

T          16 m2

≅

≅
T               q2  

T          4 m2
LAB : !!!
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Moreover:  the peak position in the ANB frame is always 
relativistically correct, in fact in general:

  
peak

 ≅ T ( p
f 
) -T ( p

i 
)
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Moreover:  the peak position in the ANB frame is always 
relativistically correct, in fact in general:

  
peak

 ≅ T ( p
f 
) -T ( p

i 
)

LAB : 
peak

 ≅ T ( q ) -T ( 0
 
) 

 rel.  different from n.r. !!!
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Moreover:  the peak position in the ANB frame is always 
relativistically correct, in fact in general:

  
peak

 ≅ T ( p
f 
) -T ( p

i 
)


peak

 ≅ T ( q / 2
 
) -T ( q / 2

 
) = 0  

LAB : 
peak

 ≅

ANB :

  rel. equal to  n.r.  
always correct !!!

T ( q ) -T ( 0
 
) 

 rel.  different from n.r. !!!
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q=500

q=600

q=700

33HeHe

V.Efros et al .PRC 81 (2010) 034001

                      PRC 83 (2011) 057001

RR
TT
(q,(q,) in the “quasi elastic” regime  ) in the “quasi elastic” regime  
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Conclusion N. 1Conclusion N. 1

the LIT represents an accurate viable method to study 
reactions to the “far” continuum where the many-body 
scattering problem (all channels!) is not solvable  (e.g. 
A>3)

only  bound state technique  is needed 
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Conclusion N. 2:Conclusion N. 2:

  Perform a non relativistic dynamical 
calculation of S ( q, ) in the quasi elastic 
regime in the ANB frame

  use the relativistically correct “2-body” 
kinematics
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the end the end 
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The benchmarks for the The benchmarks for the 
LIT methodLIT method
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Phys Lett. B338 (1994) 130

R
L (

ω
) 

[M
e
V

-1
]

ω [MeV]

test on the Deuteron: 

S(q,ω) is the longitudinal (e,e') response function R
L
(q,ω) 

q =2.3 fm-1
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test on the Triton: 

S(q,ω) is the Dipole Photoabsorption Cross Section 

  q =    

Golak et al NPA707(2002)365 



G. Orlandini -  Workshop on the Dynamics of Critically Stable Quantum Few-Body Systems, Erice, Oct.9-15, 2011

Illustration of requirement Illustration of requirement N.2:  N.2:  
one can invert  the integral transform one can invert  the integral transform 

minimizing instabilitiesminimizing instabilities
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Inversion of the LIT: the regularization method 

Works well with bell shaped kernels (and not too narrow resonances)
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A  =  4A  =  4
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SURPRISE:
LARGE EFFECT OF 

3-BODY FORCE AT LOW Q

Black curve: AV18
Red curve: AV18+UIX

44HeHe

S.Bacca et al.,
 PRL 102 (2009) 162501

    electron scattering Relectron scattering R
LL
(q,(q,))
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A  =  6A  =  6
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66--Body photoabsorption Body photoabsorption 
(total photodisintegtration)(total photodisintegtration)

EIHH 

MT
6Li

6He

classical GT 
mode ???

soft 
mode ???

  S.Bacca et al. PRL89(2002)052502S.Bacca et al. PRL89(2002)052502
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A  =  7A  =  7
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1975

S.Bacca et al. PLB 603(2004) 159 

77--Body photoabsorption Body photoabsorption 
(total photodisintegration)(total photodisintegration)
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  A very good  method to solve A very good  method to solve 
bound states:bound states:

    Expansion onExpansion on  Hyperspherical HarmonicsHyperspherical Harmonics   basis  basis 
    UUse ofse of  Lee – SuzukiLee – Suzuki unitary transformation unitary transformation to obtain the                 to obtain the                
      effective interactioneffective interaction
    Fast convergenceFast convergence

  

N.Barnea, W.Leidemann, G.O. PRC61(2000)054001

the Effective Interaction in Hyperspherical             
Harmonics method (EIHH)
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Ab initio non relativistic Ab initio non relativistic 
calculations of S(q,calculations of S(q,):):
how far in q are they how far in q are they 

reliable?reliable?
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SURPRISE:
LARGE EFFECT OF 

3-BODY FORCE AT LOW Q

NO MEASUREMENTS
AT LOW q !!!

44HeHe

S.Bacca et al.,
 PRL 102 (2009) 162501

electron scattering Relectron scattering R
LL
(q,(q,))
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RR
LL
(q,(q,) in the “quasi elastic” regime  ) in the “quasi elastic” regime  

S.Bacca et al., 
PRL 102 (2009) 162501

Dotted PWIA

dashed: AV18

full: AV18+UIX

44HeHe
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33HeHe

S.Della Monaca et al. 
PRC 77( 2008) 044007

RR
LL
(q,(q,) in the “quasi elastic” regime  ) in the “quasi elastic” regime  
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