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OUTLINE

» Why ?

» Main ingredients of the Exterior Complex Scaling (ECS)
> Questions?

» Short-range and long-range Coulombic potentials

» Pure Coulomb potential

» Summary

» Use of Complex basis (Sturmian functions)



Example:  Single ionization : (e,2e) and (Y,2e) TDCS
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WHY? 1
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Three-body Coulomb break-up processes (e.g. e-H):
VERY difficult to enforce asymptotic conditions

I’.12

g,.m,

Peterkop-type asymptotic behavior (all particles far from each other)
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No one has yet applied it to the numerical resolution
of S.E. for the ionization problem
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WHY?

Methods without explicit use of any asymptotic boundary conditions
- VERY PRACTICAL

> Exterior Complex scaling (ECS)

Complex Scaling method: r->rem

(since Nuttal and Cohen, PR, 1969)

Initially: structure of atomic systems + resonance scattering

Exterior Complex scaling (ECS): (Simon, Phys Lett. A, 1979)

Extension to scattering problems including long-range potentials (Rescigno et al, PRA, 1997)

Since then, very successful method for the study of a variety of (ionization) processes

EXAMPLES: - e-H ionization (Rescigno et al, Science, 1999)
- Photo Double lonization of He (McCurdy et al, PRA, 2004)
- Photolonization of molecules (Vanroose et al, PRA, 2006 — Yip et al, PRA, 2008 —
Fernandez et al, PRA, 2009)
- Two-slit type experiments (Tao et al, PRA, 2010)
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_ WHY?

We do not question the ECS capabilities or computation technique but

»Why does it work numerically?

» Understand and reinforce the foundations of the ECS
» Raise and answer some questions.

» Can the ECS be applied to pure Coulomb potentials?

TWO-BODY V()

/



Ingredients of the ECS approach

1) Formulation of the scattering problem
2) Exterior Complex Scaling

3) Numerical evaluation of scattering w.f.
4) Artificial cut-off of the potential

5) Amplitude extraction

For details, see for example review paper:
McCurdy, Baertschy and Rescigno, JPB, 37, R137, (2004)



ECS ingredients (1) TWO-BODY CASE

Consider the scattering between two particles interacting via a spherically symmetric potential V(7).
The radial two-body Schrodinger equation describing the dynamics of the problem is

[7;+ V('f”) _ E} /] (r) = (),

2 (41 - -

where 7 = —i ((Efa — (TQ ) ) represents the reduced kinetic energy operator, g is the reduced mass, [ the
. I e "

angular momentum eigenvalue and the energy £ = k7/(2p) assumed positive.

Simplified problem (without potential) [T — E] W (r) = 0

— free-—particle solution (Riccati-Bessel function)

U (r) = krji(kr) — sin (kr — gl) :

The solution of the scattering problem can be separated into two terms (ANSATZ)
U (r) =Wy (r)+ Py (1)

Ug (r) is taken as initial — asymptotic — state, corresponding to no scattering;
W (7) is the scattering term describing the dynamics of the collision process. In principle, W.(r)
should have pure outgoing behavior . noted WU/ (r); the corresponding wave function is noted W (r).

With the decomposition we get the following driven Schrodinger equation for U . (7)

T+ V(r) = E] Ve (r)==V(r)Uy(r).

THREE-BODY CASE (similar driver eq.)



ECS ingredients (2)

EXTERIOR COMPLEX SCALING (rotation) of the radial coordinate:

r = q(r) = r r < Ry
P=Ar) = R[)—FI[:'T'—R])EW r = Ry

where R, defines the radius within which the wavefunction will be the usual function of real valued
coordinates, and 1 > 0 represents the scaling rotation angle on the complex plane.

— imposition of the asymptotic conditions is avoided. This is associated to the fact that, when the
exterior complex rotation is performed, V*(r) — 0 for r > R,;, and a numerical zero can be
assumed in, e.g.. a numerical grid.

Im(a(r) Mapping

\ 4

R
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1)
2)
3)

4)
5)

ECS ingredients (3)

Numerical evaluation of scattering w.f. on a finite region of space
(r<R,) with different techniques: finite elements, finite differences, L?

basis, B-splines, direct numerical integration, ...)
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ECS ingredients (3)

HOWEVER for values of » > Ry

U, () with pure outgoing hehavior: the rotation gives an exponentially decreasing asymptotic behavior:

exp(ikr) — exp(ikre™) — 0
Uy () has a standing wave behavior and becomes exponentially divergent
0 o ‘ .

Wy (1) ~ sin (k-rei” — %Z)
~ i [Ezikr(cos(n)—l—isin(n)) _ e—ikr(coa(n)—kisin(n))] ~ _ie—ikrcos{n)ekrsin('r}}'
21 21
—  for r > Ry, the full wave function W (r) = Wy (r) + Wy, (r) will be exponentially divergent.

The non-homogeneity V(r)U;(r) of the driven equation will be divergent unless the
potential V(r) on the RHS decreases fast enough to make it well defined and bound: this condition is met
only for short—-range potentials decreasing exponentially or faster [Baumer et al, PRA, 1975)).

Need a vanishing RHS!
What to do? 11



ECS ingredients (4)

AN ARTIFICIAL SHARP CUT-OFF of the potential V(r) at the value r = R

. Vi(r) r< Ry
Vi(r) = {[] r > R(yL

for every potential excluding those decreasing exponentially or faster.
Cut-off ONLY on RHS of the driven equation

[Ti+V(r) — E] Ve (r) = =Vpg(r)Wo ().

— UNBALANCED TREATMENT !
Making Ry large enough we can guarantee that Vg (r) differs negligibly from the physical potential V(7).

A 4

—_—
—
—_—
—_—
—
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ECS ingredients (5)

Extraction of the transition amplitude

The amplitude A; can be extracted using the definition
Wo(r)

Ap = —2p

Using the Schrodinger equations and assuming a vanishing contribution for r > Ry:

L A

Ay = 2u(

where the subscript Ry denotes the i11tegrat10n limited to the domain 0 < r < Rj.

The amplitude is obtained from the function defined in the inner region (r < Ry),
by taking the limit of the function for large r but smaller than Fy .
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PHYSICAL REVIEW A, VOLUME 63. 022712

Electron-impact ionization of atomic hydrogen

M. Baertschy." T. N. Rescigno.” W. A. Isaacs.” X. Li.” and C. W. McCurdy™*

Technical reasons connected with the use of complex
scaling require us to truncate the interaction potentials on the
complex portions of the grid [20]. The physically correct
results are then recovered by extrapolating the computed val-
ues to infinite box size. Because we cannot offer a strict
mathematical proof that this extrapolation yields the exact
value, we have carried out a number of numerical tests to
show that the procedures employed are in fact producing the
correct result. For instance, we will show that the radial wave

Ultimately, however, the fundamental correctness of our pro-
cedure relies on the empirical observation that the computed
results are in perfect agreement with absolute experimental
measurements that probe the most mtimate details of the
collision dynamics at energies where long-range correlation
effects are very important.

14
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PHYSICAL REVIEW A, VOLUME 63. 022712

2001

Electron-impact ionization of atomic hydrogen

M. Baertschy.! T. N. Rescigno.™ W. A. Isaacs.” X. Li.” and C. W. McCurdy™*

problems with long-range interactions. I'he key to applying
the ECS procedure to long-range potential problems is to
truncate the interaction potential at the boundary of the hy-
persphere and to either carry out calculations with R large
enough that the truncation of the potential 1s of no physical
consequence or, if this 1s impractical, to carry out calcula-
tions for different values of R, and perform a numerical
extrapolation of Ry— to obtain the physically correct re-
sults.

plex part of the contour, making it necessary to truncate the
long-range Coulomb potentials at R, in the inhomogeneous
terms le.; /) [20]. This is the only source of systematic error in

our scheme for calculating the scattered wave with exterior
complex scaling. The numerical procedures we employed to




PHYSICAL REVIEW A VOLUME 55. NUMBER 6 JUNE 1997

Making complex scaling work for long-range potentials

T. N. Rescigno M. Baertschy and D. Byrum C. W. McCurdy

The purpose of this paper is to show that exterior scaling
can be used to formulate a procedure for solving the full
scattering problem using only square-integrable functions
and that. unlike the original complex scaling method, the
method 1s not restricted to exponentially bounded potentials.

We reiterate that by zeroing the potential on the complex
portion of the contour, we eliminate any numerical difficul-
ties associated with a less than exponential fall off of the
potential at large distances, but have no measurable effect on
the cross section.

16



PHYSICAL REVIEW A VOLUME 55. NUMBER 6

Making complex scaling work for long-range potentials

T. N. Rescigno M. Baertschy and D. Byrum C. W. McCurdy

required matrix elements. Smce Vz () 1s a finite-range po-
tential. the method will converge for any value of Ry if N 1s
large enough. This truncation of the potential allows us to
define a process that limits to the correct physical result as
R,— . Thus. by choosing the interior region large enough.
we can insure that the truncated potential differs insignifi-
cantly from the physical potential under consideration [28].

JUNE 1997

N: number of
basis functions

idly than |1/

at infinity.

[28] This discussion assumes that the potential falls off more rap-

17



QUESTION: COULOMB CASE?

* Since the 1997 PRA paper, the authors carried out a series of
VERY succesful calculations but do not question again the Coulomb
case.

Just make reference to that paper!

earlier to the best of our knowledge. Furthermore, its
extension to the Coulomb case remained questionable.
However, the definite success in applying this method
to important and complicated problems (see papers [5,8]
and [12] and references therein) makes a detailed study
urgent.

 In 1997 PRA paper, the authors state: « The discussion assumes
that the potential falls off more rapidly than |1/r| at infinity » .

Is it possible to deal with the pure Coulomb potential?
18



QUESTION?

* What is neglected?

‘-D[)(T)

? o

wi(r Wo(r),, .
7 — 27— ot

-

Ap=2u(

Within the ECS framework, only the first term is used to evaluate the transition amplitude

as the potential is assumed to be cut, and hence V() — Vi, (7) is zero.
— an error — which decreases as R increases — is introduced in the calculation
by neglecting the external contribution of the potential.

Green’s function formalism Ut(r)  U(r) X o e Yo(r)
(integral representation) B - - + ; redrG ('7:'7 )I/ (7) W
G* provides correct asymptotic behavior
To avoid divergency: Ut (r Wo(r ‘ Wo(r’
gency 03001 fD ey vy ol
N N , .

— \I’+('?‘) not corregy !



MORE QUESTIONS?

What are the consequences of cutting the potential ONLY on RHS?
What is the meaning of the solution in the outer region?

Is it really necessary to cut the potential?

20



HOW DOES THE ECS METHOD WORK?
HOW TO ADAPT IT FOR THE COULOMB POTENTIAL?

SHORT RANGE POTENTIALS

The RHS of the driven Schrodinger equation for V.. (r)
(T +V(r)— E] Ve (r) ==V (r)W¥(r).

is zero at large enough distances from the origin

— the function V.. (r) may have outgoing wave behavior at large distances

as given by the Riccati-Hankel functions, H, J!i([]'._ r), which behave asymptotically as eﬂ(kr—%E)

]_ - ™ . T 7 T
() = Wolr) + Wi(r) = [—e_i(kr_ﬁz) + ei(kr—ﬁf)] + Ay ek

;
= ¢ gin (k:r' — gl + 63) .

W (r) provides asymptotically the transition matrix A; = ' sin(¢d;) in terms of the scattering phase-shift ¢;

21



Explicitly excluded in 1997 PRA paper ---- note [28] !

Solution vRES(r) is known — it is real.
W_.(r) needs to construct the well-known Coulomb logarithmic phase

Hl((] r) N ei[kr-aln(Zkr)-In/Z]

with a=z,z, Wk (Sommerfeld parameter).

If a standing-wave free-particle initial state W(r) is taken
— INCOMPATIBLE with pure outgoing behavior of W_(r)

o 1 A LT . (o I E
III_{T'_) — \I,F[](-rj + ‘LII:{TJ . E [_E—e‘l{.ﬁr—.—_,f) + Ee‘l[.ﬁr‘—.—_,f}} iy Esl[_i.r—u In(2k ]Eij

BAD CHOICE OF ¥ (r) FROM THE OUTSET !

22



COULOMB POTENTIAL V,(r)=z,z,/r
+ SHORT RANGE POTENTIALS V()

V()=V,(r)+V (1)

Reformulation: (McCurdy and Martin, JPB, 2004)
The regular solution of V,(r) is taken as initial state W (r)

and the scattering is associated to V,(r).

Then scattering theory is correctly recovered.

BUT WHAT ABOUT THE PURE COULOMB CASE ?

23



PURE COULOMB POTENTIAL V(r)=z,z,Ir

Gasaneo, Ancarani and Mitnik (submitted)

Introduce a Coulomb distorted initial state W, ;. (r)
which « diagonalizes » the Coulomb interaction at large distances.

NEW decomposition:

Instead of

UF(r) = Wo gis(r) + Ver(r)

W (r) = Wo(r) + g (r)

TWO PROPOSALS for W,,(r)

24



Woas(r) = sin [kr — (a In(2kr) + El) g(-r)}

=0 i( e [Rr a In(2kr)— E] i [kr—aln(?kr}—%q)
2i ’

where g(r) can be any function growing faster than r at the origin and going to one at large distances as,
eg., g(r)=1-— e—ar’ (@ is a positive real constant).

The function Wy g5 () solves, asymptotically, the Schrodinger equation

1

[T+ V(1) = E] U (r) = O (_) |

The standard scattering theory is recovered as we may ask V. () to have outgoing behavior :

T (1) _}%(_ o —i[kr—an(2kr)—31] +€f[k-r—a-1n(zkr)—gz]) + A oi[kr—an(2kr)—31]

A transition amplitude 4; = €“'sin(0;) is extracted.

25



Wis(r) 0

l.lJSC(r) 1

P(r)=

0.5
l'IJO,dis(r)-i-LIJsc(r)

0
-0.5

1=

Angular momentum I=0, momentum k=1 (E=0.5), p=1, z,z,=-1, and a=0.5.
In the bottom panel, the Coulomb wave function vRed(r) is included (dotf@l line)

FIRST PROPOSAL (illustration)
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for comparison.



Toun(r) = kerjy (k) = Wo(r) r < Ry
where ﬂi(a‘, r) are solutions of the Coulomb problem from r = R, and up to oc.
The function Wy s (1) solves the Schrodinger equation
71+ Vias(r) — E] Woas (r) = 0,
where
0 r < Ry

Vi(r) — =

() {V(f") r > Ry,

For r > Ry, the RHS is zero (as ECS recipe requires)
[7? + V(I) - E] Lj[sc (I) =0,
kr—aln{ri)—gl}

— W (r) may have outgoing behavior Agei[ and one may extract the transition amplitude.

Our second proposal is equivalent to the one discussed in the work of Elander and co workers
[Elander et al, Few Body Systems, 2009, Volkov et al, EuroPhys. Lett, 2009).

HOWEVER, this requires the knowledge of the exact asymptotic solution of the problem.

If OK for two-body, what about three<body?



QUESTION:
* In 1997 PRA paper, the authors state: « The discussion assumes

that the potential falls off more rapidly than |1/r| at infinity » .
* |s it possible to deal with the pure Coulomb potential?

ANSWER:
YES, but need to use a Coulomb distorted initial state W, (r) rather than W(r)

28



ALTERNATIVE CUT-OFF PROCEDURE

MORE CONSISTENT WITH SCATTERING THEORY
Gasaneo, Ancarani and Mitnik (submitted)

Ti+V(r)— E] V. (r) =

A. UNBALANCED TREATMENT (ECS procedure)

(Ti+ V(r) — E] U,

(r) =

—Vi,(r) ¥y (7)

B. BALANCED TREATMENT (our proposal)

[T+ Vi ,f,”'."f ) — E]

wlr) =

— Vg, (r)Wq (r)

- divergency of RHS still avoided (as in ECS)
- scattering problem properly defined
(amplitude can be extracted from the asymptotic behavior)

—V(r)¥y(r)

29



A. UNBALANCED TREATMENT (ECS procedure) [1/2]

[T+ V(r) — E| U (r) = = Vi, (r) ¥ (r)

r < Ry : inner region (I): WS (r) = Apfe(r) + UP(r)

r > Ry : outer region (IT): V¢ . (r) = A;fH; (a,7)  (the RHS is zero - outgoing asymptotics).
Impose continuity at r = Iy of the fogarit-hmic: derivative of the wave function: Aj and Aj; are complex.
NOTE: the ECS solution has a discontinuous derivative.

QUESTION: is our solution W% (r) equivalent to the ECS solution?

FULL SOLUTION in the inner region (I): W(r) oc vf9(r)

i.e. a function PROPORTIONAL TO THE EXACT solution of the Coulomb potential !
To obtain exactly vf9(r), we can renormalize W(r) with a KNOWN complex constant.

This is a very important result and could be the cornerstone of the ECS methodology .

Any other condition applied at R, will lead to the same conclusion, i.e., a Coulomb wave function v (r)
multiplied by constant. This implied no necessity of imposing any boundary condition as
stated in the ECS approach. The problem is to find appropriately the renormalization constant.

30



A. UNBALANCED TREATMENT (ECS procedure) [2/2]

[T+ V(r) — E| U (r) = = Vi, (r) ¥ (r)

In principle, since the potential Vg, (r) is of short range, we can try to extract the transition matrix from
the asymptotic limit of the wave function in the region where the potential becomes negligible.
In the outer region (I7) :

UH(r) — krj(kr) + ArrH (o, 1)

= i (—e_i(k'?”—%f) 4 ez’(k-r—gg)) i
2

UG (Ry)

Eji[k'r—o: In(2kr)—31]
H; (o, Ry) '

This clearly shows that the initial state is not compatible with the Coulomb distorted outgoing state.
— mneed a distorted initial state, U 4.(r), with proper Coulombic asymptotic behavior.

31



A. UNBALANCED TREATMENT (ECS procedure) : ILLUSTRATION (R,=100)

I | I I I I | I I I I | I I I I | ]
3:_ 1_ I I I I | I I I I . 1 I I I I I PN I I _:
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A. UNBALANCED TREATMENT (ECS procedure) : ILLUSTRATION (R,=100)

1 i | | | | | | | | | | | | | | | | | | | i
_0.005 - | | | | | | | | | . 0.1 :I | | | | | | | | I _] =
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B. BALANCED TREATMENT (our proposal)

[,}T—F Vig,(T) — E] Ve (r) = _I';}f'.:ulfr}ly[] (7)

In the inner region (I): llgfrm( ) = Atufes(r) 4 U (r)
In the outer region (II): llgift (r) = A9 H; (0, ?) (thc RHS and LHS are zero)

Imposing again for logarithmic continuity at » = Ry: A7 and A} are complex.
The scattering problem is now well defined.

In the limit of large distances r > R,

1
2

This can be verified by solving the scattering problem following the standard QM recipe used

U(r) = krj(kr)+ AFFH(0.r) =

(ot 4 10r-0) 4 gt

for short-range potentials.

As Ry is increased, the Schrodinger equation with the truncated potential Vi () tends to the
original Coulomb one with V(7). However, it is well known that different cut—off to the Coulomb
problem can lead to different limits which do not necessarily agree with the exact Coulomb
transition matrix. The limit Ry — oo requires a careful study.




QUESTION:
What are the consequences of cutting the potential ONLY on RHS?
What is the meaning of the solution in the outer region?

ANSWER:
Unphysical solution in the outer region (r>R,).

Discontinuous derivative of the wave function at R,.
Incompatible with standard amplitude extraction (at least in Coulomb case)

A balanced cut-off treatment is more appropriate/consistent

(I.e. using a cut potential from the outset )
but the limit R, - « needs to be investigated

35



SUMMARY

COULOMB CASE

» Coulomb distorted wave reformulation (TWO PROPOSALYS).
A similar reformulation for the three-body case? (need asymptotic solution!)

> ANALYTICAL STUDY
- Cut-off procedure (ECS): unbalanced treatment of the potential.
- Alternative cut-off procedure: balanced treatment more appropriate.
Inner solution is proportional to the exact solution (cornerstone of ECS).
A similar demonstration for the three-body case?

36



SUMMARY

» ECS method: numerically very sucessful
... but raised some questions
... and provided some answers + reinforce method!
... but some questions remain open (3 body!)

Ultimately, however, the fundamental correctness of our pro-
cedure relies on the empirical observation that the computed
results are 1n perfect agreement with absolute experimental
measurements that probe the most intimate details of the
collision dynamics at energies where long-range correlation
effects are very important.

FIRST take home message:

ECS works numerically but not on solid formal footing
37



Another question

Can the cut-off procedure be avoided altogether ?

-YES by using W, ,.(r) with known exact asymptotic solution
If not known: better to use a balanced treatment.

- YES by using complex basis with appropriate asymptotic behavior

Use of real L? basis functions
with a complex Hamiltonian
(through ECS rotation)

Use of complex basis functions
with a real Hamiltonian

Basis is rotated NOT the driven equation !!

BUT incoming part (e7¥") leads to divergencies on RHS — CUT-OFF !

38



PROPOSAL: use STURMIAN basis functions

Spi(r=0) = 0
= Eg(kr—ﬂ-ln[ggﬂ_%g)

Spa(r — o0

EXAMPLE Sn’l(r)~eikf:(;os(kr)+i8in(kr)

EEE

J = Re{SO,z}
— Re{S,,}
— Re{S, .}

- Im{SONI}
= Im{SO,Z}
- Im{SO,S}

— Im{SOA}

39



STURMIAN BASIS FUNCTIONS

AlIM: solve Schrodinger equation (H-E)W =0

TWO-BODY CASE: standard approach
1
U(r) : central potential U(r) = ;Rz(?"}}’}m(ﬂ

1d> I(1+1)

Radial equation: _
2dr? N 2r?

+U(r)— E| Ri(r) =0

Eigenvalue E

R/(r): eigenfunctions of the ENERGY

Complete and orthogonal set
40



TWO-BODY CASE: Sturmian approach

1> U(1+1)
[_Qd_rg + 92 + U{T] — E:| SRE{TJ — _.SHVQ{T)STLE(TJ
U(r) : auxiliary potential (short or long range, - _
usually related to the potential to be solved) ,,ILTG rU(r) =47
V,(r): generating potential (short range) lim r\/(r) — 0
r— oo

E: externally fixed parameter
B,: eigenvalues

S, (r) : Eigenfunctions of the potential

Complete and orthogonal (potential V(r) weighted) set

- BASIS SET

1 d?

Asymptotically: ———+U(r) = E| Spi(r)=0
2dr-

2> Al S, (r) : asymptotic behavior dictated by U(r) 44



TWO-BODY CASE: Sturmian approach
Boundary conditions (for all n)

BOUND STATES (E=-k¥/2<0)

CONTINUUM STATES (E=k2/21>0)

Spi(r=0) =0

Sﬁ'rf(r — 'DC} — Hfj:(&': -}“) — Eié(kl"—ﬂ']n[fkr]_%ij

Incoming (-) or outgoing (+) wave
(just a plane wave if U(r) not coulombic)

42



ADVANTAGES OF STURMIAN BASIS

All basis elements have correct asymptotic behavior
(with correct energy for continuum states)

They concentrate the effort in the inner part
« Diagonalize » the kinetic energy and the potential if U(r) appropriately chosen

Their orthogonality property transforms the Schrodinger equation
into a matricial problem (by projection on the basis functions)

-~ VERY EFFICIENT BASIS
(require smaller computational resources)

43



STURMIAN basis functions S, ;(r — o0) = Jirais ol

AIM: solve driven equation: [’7; + V(T) _ E] V.. (7«) _ —V(T)\PQ (7“)

Expand in Sturmian functions:

\PSC(T) — ; a"”‘S”?l(T) Z _.5?15%" ,n-a*n e bﬂ-’
V() Wo(r) = Y buSua(r) -

Matrix equation

Asymptotic limit:

\1}30(71) _ Z a.n.eé.[kr—cx111(21:.?‘)—%{] - 'ﬂei[k?’—&111(214:7‘)—%.!]
n

Transition amplitude: Tir — Zn (.,

44



STURMIAN basis functions

Exterior Complex Scaling S‘”J (q(r: -;r})) — HE+ (Q -?‘e'i'”)
Asymptotic limit: H[+ (Q _Te'i?}) N e'i[krei??—o; ]11(2!3?"5“?)— %E] N 0
AS DESIRED !

No need of CUT-OFF (as no incoming part) !!!

The proposal is promising ... applications on the way

SECOND take home message:
CUT-OFF can be avoided by using
appropriate complex basis functions

45



Thank you for your attention!
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THREE-BODY CASE

Several successful applications:

-bound atomic states (ground and excited), resonances
(e.g. BEST ground state energy with uncorrelated product)
- H," molecule
- electron-atom ionization in Temkin-Poet model
(reproduce SDCS benchmark results)

REFERENCES: Frapiccini et al, JPB, 2010
Randazzo et al, PRA, 2010
Frapiccini et al, Int. J. Q. Chem, 2009
Frapiccini et al, PRA, 2010
Mitnik et al, Comp. Phys. Comm., 2011

... to come

- Electron-hydrogen ionization for L>0
- Double photo-ionization of He

- With smaller computational resources
- Possibly opening on more complex systems



HREE-BODY CASE

49



ECS ingredients (1) THREE-BODY CASE

A three-body scattering problem can be described using the time-independent Schrodinger equation
[H— E]V" =0.

Let Hy be an Hamiltonian where some part W has been neglected: H = Hy+ W

Set U = lI’[; + 11’::
U is a given initial state solving an approximate (asymptotic, unperturbed) Hamiltonian Hj
U7 is the scattering wave function . It is defined with outgoing wave asymptotic behavior

and possesses all the information about the collisional problem.
—+ U solves the driven Schrodinger equation:
[H — E|U! =WV,

BOUNDARY CONDITIONS: - regularity at the origin

- pure outgoing behavior

EXAMPLE OF INITIAL STATE (3-body): WV, =" [BOUND-FREE ]

T

HERE: TWO-BODY CASE 50
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