Sixth Workshop on the Critical Stability of Quantum Few-Body Systems Erice, Sicily, October 2011

Few-body structures of polar molecules in two dimensions

<u>Artem G. Volosniev</u> Dmitri V. Fedorov Aksel S. Jensen Nikolaj T. Zinner Jeremy R. Armstrong

Aarhus University, Denmark

Outline

- 1. Introduction
- 2. Two dipoles in two layers
- 3. Few body structures
- 4. Outlook

What is interesting about dipolar interaction in 2D?

New condensed-matter phases and new complex quantum dynamics [1], because it is

- long range;
- anisotropic.

Now the interaction can be controlled in the lab with

- atoms Cr with magnetic dipole moment [2];
- molecules with induced electric dipole KRb [3].

2D geometry

- supressed rate of the chemical reactions
- [1]. T.Lahaye, C. Menotti, L.Santos, M.Lewenstein, and T.Pfau, Rep. Prog. Phys. 72, 126401 (2009)
- [2]. A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, PRL 94, 160401 (2005)
- [3]. K.K.Ni et al. Science 322, 231 (2008)

The System

- Two particles (mass *M*, dipole moment **D**)
- **D** is aligned at angle θ
- 2D (parallel zero-width layers, separated by d)

It should be noted that the case $\theta = \pi/2$ can be found in the following papers A. Pikovski, M. Klawunn, G. V. Shlyapnikov, and L. Santos, *PRL* **105**, 215302 (2010)

J. R. Armstrong, N. T. Zinner, D. V. Fedorov, A. S. Jensen, EPL 91, 16001 (2010).

The Interaction

The interaction in Cartesian coordinates:

$$V(x,y) = D^2 \frac{x^2 + y^2 + d^2 - 3(x\cos\theta + d\sin\theta)^2}{(x^2 + y^2 + d^2)^{5/2}},$$

Properties of the interaction

- anisotropic,
- **zero net volume**: $\int V(x, y) dx dy = 0$,
- always provides a bound state*,
- for $D \rightarrow 0$ there exists just one bound state^{*}.

* Simon B (1976) Ann. Phys. 97, 279

The Interaction

The interaction in polar coordinates

$$V(r,\varphi) = D^2 \frac{3\sin^2\theta - 1}{2} \frac{r^2 - 2d^2}{(r^2 + d^2)^{5/2}} - 3D^2 \frac{rd\sin(2\theta)\cos(\varphi)}{(r^2 + d^2)^{5/2}} - \frac{3D^2}{2} \frac{r^2\cos^2\theta\cos(2\varphi)}{(r^2 + d^2)^{5/2}} - \frac{r^$$

Interaction has three terms in $\cos(m\varphi)$ basis, except for three special polarization angles:

- $\theta = \pi/2$: just first term contributes, interaction is isotropic; • $\theta_c = \arcsin \sqrt{1/3}$: first term vanishes;
- $\theta = 0$: second term vanishes.

Numerical procedure

Minimization of the functional

$$E[\Psi] = rac{\langle \Psi | H | \Psi
angle}{\langle \Psi | \Psi
angle},$$

with the trial function

$$\Psi(\mathbf{r}) = \sum_{i=1}^{N} c_i e^{-(\mathbf{r}-\mathbf{s}_i)^T A_i(\mathbf{r}-\mathbf{s}_i)},$$

where c_i are the linear and A_i , s_i are non-linear variational parameters.

Numerical procedure

- stochastically pick N Gaussians A_i, s_i
- determine c_i from the condition $\delta E = \sum \frac{\partial E}{\partial c_i} \delta c_i = 0$
- **\blacksquare** stochastically create new element A_{new}, s_{new}
- $\begin{array}{l} \blacksquare \ E[(A_{new},s_{new}),(A_2,s_2),...,(A_N,s_N)] < \\ E[(A_1,s_1),(A_2,s_2),...,(A_N,s_N)] \ ?, \ \text{pick the best basis} \end{array}$
- do as long as needed

Numerical solution

We get the energy *E* of the system for different polarization angles as function of the dimensionless strength of the interaction $U = MD^2/(\hbar^2 d)$.

Two dipoles in two layers weakly-bound regime

Analytical approach

When $U \rightarrow 0$:

- \blacksquare < $r^2 > \rightarrow \infty$, so we have to enlarge sample basis;
- tail properties becomes very important, and the tail is not Gaussian.

Consequently, the convergence of the numerical method slows down. To get the energy we solve the Schrödinger equation

decompose wave function

$$\Psi(r,\varphi) = \frac{1}{\sqrt{r}} \sum_{m=0}^{\infty} a_m \Phi_m(r) \cos(m\varphi), \ \lim_{r \to 0} \frac{\Phi_m(r)}{r^{m+1/2}} = 1,$$

• expand the coefficients, a_m , and the functions, Φ_m

$$a_m = Ua_m^{(1)} + U^2 a_m^{(2)} + \dots,$$

$$\Phi_m = \Phi_m^{(0)} + U\Phi_m^{(1)} + U^2 \Phi_m^{(2)} + \dots,$$

Two dipoles in two layers weakly-bound regime

Analytical approach

- the potential in the basis $cos(m\varphi)$ has just three terms so we assume that $a_m = 0$ for m > 2.
- we assume that the ground state wave function vanish at infinity

finally we get the energy*, which in the lowest order can be written as

$$E = -\frac{4\hbar^2}{Md^2} \exp(-2\gamma) \exp(-\frac{2}{U^2 A}) ,$$
$$A = \frac{1}{16} (3\sin^2\theta - 1)^2 + \frac{1}{8}\sin^2(2\theta) + \frac{1}{32}\cos^4\theta .$$

* Volosniev A G, Zinner N T, Fedorov D V, Jensen A S and Wunsch B (2011) J. Phys. B:At. Mol.Opt.Phys. 44,

Two dipoles in two layers weakly-bound regime

The wave function in the weakly-bound regime

The wave function in the weak binding regime * strongly delocalized ($\langle r^2 \rangle \sim \exp(\text{const}/U^2)$); has symmetric tail $\sim K_0(\alpha r/d)$, $\alpha = \frac{|Md^2E|}{\hbar^2}^{1/2}$.

* Volosniev A G, Fedorov D V, Jensen A S and Zinner N T (2011) PRL 106, 250401

Two dipoles in two layers

Stochastic evaluation of the tail of the wave function

Two dipoles in two layers weakly-bound regime

Universality in the weakly-bound regime

As approximation we use just the tail to estimate some observables.

$$\Psi = \text{const} \times K_0(\alpha r/d)$$

With this we get

•
$$< r^2 >= 2\hbar^2/(3M|E|)$$

• $< x^2 > / < r^2 >= 1/2$

Two dipoles in two layers weakly-bound regime

Numerical approach in the weakly-bound regime

We compare results, obtained through the numerical minimization with results, given by this analytical approximation

Two dipoles in two layers

always bound

 \blacksquare energy increases as function of the polarization angle for $U \rightarrow 0$

$$\blacksquare E \sim -e^{-\frac{2}{U^2 A(\theta)}}$$

•
$$\Psi(r) \sim K_0(\alpha r/d)$$

• $E < r^2 >= \text{const}$

Few body configurations with perpendicular polarization. Thresholds

Geometry of the interaction

Perpendicular polarization;2D

$$V(r,n) = \frac{r^2 - 2n^2d^2}{(r^2 + n^2d^2)^{5/2}}$$

where nd - distance in z direction

• n = 0: numerical problem

Regularization with $\Psi = \phi_{2D} \sqrt{\frac{1}{L\sqrt{\pi}}} e^{-\sum_{j} \frac{z_{j}^{2}}{2L^{2}}} *$

$$V_r(r) = rac{1}{2\sqrt{2}L^3} U\left(rac{3}{2}, 1, rac{r^2}{2L^2}
ight),$$

* M.A. Baranov, H. Fehrmann, and M. Lewenstein, PRL 100, 200402 (2008)

The System

- **2** particles $(\mathbf{r_1}, \mathbf{r_2})$ with dipole moment D_1 in one layer;
- 1 particle $(\mathbf{r_3})$ with dipole moment D_2 in another;
- all with the same mass *M*.

System b₁

The Shrödinger equation

$$\left(-\sum_{i=1}^{3} \frac{\hbar^2}{2M} \vec{\nabla}_i^2 + D_1 D_2 V(|\mathbf{r_1} - \mathbf{r_3}|, 1) + D_1 D_2 V(|\mathbf{r_2} - \mathbf{r_3}|, 1) + D_1 D_1 V_r(|\mathbf{r_1} - \mathbf{r_2}|) \right) \phi_{2D} = \epsilon_3 \phi_{2D} ,$$

Two dimensionless parametres

λ_a = M D₁D₂/h²d - strength of the interaction with attractive core;
 λ_r = M D₁D₁/h²d - strength of the repulsive interaction.

Few body configurations

Energy dependence of the system of three dipoles

Using the same numerical procedure we get energy of the system $E_3 = \epsilon_i \frac{Md^2}{\hbar^2}$

In this example the system is unbound for $\lambda_r = \lambda_a$

Stability of the system for $\lambda_a = \lambda_r$

- \blacksquare the system is bound for sufficiently small ratio λ_r/λ_a
- the system is unbound for sufficiently big ratio λ_r/λ_a

For any given λ_a there exists a critical repulsive strength, $\lambda_r^{cr}(\lambda_a)$ such that $E_3(\lambda_r^{cr}(\lambda_a), \lambda_a) = E_2(\lambda_a)$

$$\lambda_r^{cr}(\lambda_a) = \frac{E_2(\lambda_a) - \langle \phi_{2D} | T + \lambda_a V_{13} + \lambda_a V_{23} | \phi_{2D} \rangle}{\langle \phi_{2D} | V_{12} | \phi_{2D} \rangle},$$

Few body configurations

Stability of the system for $\lambda_a = \lambda_r$

Proof of instability

- prove that $\frac{\partial \lambda_r^{cr}/\lambda_a}{\partial \lambda_a} \ge 0$ (direct calculation using that $\frac{\partial E}{\partial \lambda_a} < \phi_{2D} | \phi_{2D} > = < \phi_{2D} | \frac{\partial H}{\partial \lambda_a} | \phi_{2D} >$);
- show that for infinetely large value of λ_a the system is unstable (compare the minimum of the full potential for three body with the two body energy).

The system is unstable always for $\lambda_r > 0.375 imes \lambda_a$

The System

- 2 dipoles in one layer with dipole moment D_1 ;
- 1 dipole in layer above with dipole moment D_2 ;
- 1 dipole in layer below with dipole moment D_2 .

system c1

Results

The same procedure shows that

- the system is unbound for $\lambda_a = \lambda_r$;
- system is more bound in a sense that $\lambda_r^{cr}(3) < \lambda_r^{cr}(4)$.

Numerical results for the critical strength *

* A. G. Volosniev, D. V. Fedorov, A. S. Jensen, N. T. Zinner arXiv:1109.4602v1 (2011)

Three and Four particles

- are always unbound for $\lambda_a = \lambda_r$;
- three particles are unbound for all $\lambda_r > 0.375 \lambda_a$;
- four particles are unbound for all $\lambda_r > 0.75 \lambda_a$.

Outlook

- more particles (7,10) can be bound;
- different polarization;
- external field;
- quasi 2D;
- **...**