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Introduction

What is interesting about dipolar interaction in 2D?

New condensed-matter phases and new complex quantum
dynamics [1], because it is

long range;

anisotropic.

Now the interaction can be controlled in the lab with

atoms Cr with magnetic dipole moment [2];

molecules with induced electric dipole KRb [3].

2D geometry

supressed rate of the chemical reactions
[1]. T.Lahaye, C. Menotti, L.Santos, M.Lewenstein, and T.Pfau, Rep. Prog. Phys. 72, 126401 (2009)
[2]. A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, PRL 94, 160401 (2005)
[3]. K.K.Ni et al. Science 322, 231 (2008)
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Two dipoles in two layers

The System

Two particles (mass M, dipole moment D)

D is aligned at angle θ

2D (parallel zero-width layers, separated by d)

It should be noted that the case θ = π/2 can be found in the following papers
A. Pikovski, M. Klawunn, G. V. Shlyapnikov, and L. Santos, PRL 105, 215302 (2010)

J. R. Armstrong, N. T. Zinner, D. V. Fedorov, A. S. Jensen, EPL 91, 16001 (2010).
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Two dipoles in two layers

The Interaction

The interaction in Cartesian coordinates:

V (x , y) = D2 x
2 + y2 + d2 − 3(x cos θ + d sin θ)2

(x2 + y2 + d2)5/2
,

Properties of the interaction

anisotropic,

zero net volume:
∫

V (x , y)dxdy = 0,

always provides a bound state*,

for D → 0 there exists just one bound state*.

* Simon B (1976) Ann. Phys. 97, 279
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Two dipoles in two layers

The Interaction

The interaction in polar coordinates

V (r , ϕ) = D2 3 sin
2 θ − 1

2

r2 − 2d2

(r2 + d2)5/2
−

3D2 rd sin(2θ) cos(ϕ)

(r2 + d2)5/2
− 3D2

2

r2 cos2 θ cos(2ϕ)

(r2 + d2)5/2
.

Interaction has three terms in cos(mϕ) basis, except for three
special polarization angles:

θ = π/2: just first term contributes, interaction is isotropic;

θc = arcsin
√

1/3: first term vanishes;

θ = 0: second term vanishes.
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Two dipoles in two layers

Numerical procedure

Minimization of the functional

E [Ψ] =
< Ψ|H|Ψ >

< Ψ|Ψ >
,

with the trial function

Ψ(r) =

N
∑

i=1

cie
−(r−si)

TAi (r−si),

where ci are the linear and Ai, si are non-linear variational
parameters.
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Two dipoles in two layers

Numerical procedure

stochastically pick N Gaussians Ai, si

determine ci from the condition δE =
∑ ∂E

∂ci
δci = 0

stochastically create new element Anew, snew

E [(Anew, snew), (A2, s2), ..., (AN, sN)] <
E [(A1, s1), (A2, s2), ..., (AN, sN)] ?, pick the best basis

do as long as needed
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Two dipoles in two layers

Numerical solution

We get the energy E of the system for different polarization angles
as function of the dimensionless strength of the interaction
U = MD2/(~2d).
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Two dipoles in two layers

weakly-bound regime

Analytical approach

When U → 0:

< r2 >→ ∞, so we have to enlarge sample basis;

tail properties becomes very important, and the tail is not
Gaussian.

Consequently, the convergence of the numerical method slows
down. To get the energy we solve the Schrödinger equation

decompose wave function

Ψ(r , ϕ) = 1√
r

∑∞
m=0 amΦm(r) cos(mϕ), limr→0

Φm(r)

rm+1/2 = 1,

expand the coefficients, am, and the functions, Φm

am = Ua
(1)
m + U2a

(2)
m + ...,

Φm = Φ
(0)
m + UΦ

(1)
m + U2Φ

(2)
m + ...,
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Two dipoles in two layers

weakly-bound regime

Analytical approach

the potential in the basis cos(mϕ) has just three terms so we
assume that am = 0 for m > 2.

we assume that the ground state wave function vanish at
infinity

finally we get the energy*, which in the lowest order can be written
as

E = − 4~2

Md2
exp(−2γ) exp(− 2

U2A
) ,

A =
1

16
(3 sin2 θ − 1)2 +

1

8
sin2(2θ) +

1

32
cos4 θ .

* Volosniev A G, Zinner N T, Fedorov D V, Jensen A S and Wunsch B (2011) J. Phys. B:At. Mol.Opt.Phys. 44,

125301
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Two dipoles in two layers

weakly-bound regime

The wave function in the weakly-bound regime

The wave function in the weak binding regime *

strongly delocalized (< r2 >∼ exp(const/U2));

has symmetric tail ∼ K0(αr/d) , α = |Md2E |
~2

1/2
.

* Volosniev A G, Fedorov D V, Jensen A S and Zinner N T (2011) PRL 106, 250401
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Two dipoles in two layers

weakly-bound regime

Stochastic evaluation of the tail of the wave function

30 + 8

30 + 12

30 + 16

const × K0(|α|s)

U = 0.9; θ = θ∗c
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√
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Two dipoles in two layers

weakly-bound regime

Universality in the weakly-bound regime

As approximation we use just the tail to estimate some observables.

Ψ = const× K0(αr/d)

With this we get

< r2 >= 2~2/(3M|E |)
< x2 > / < r2 >= 1/2
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Two dipoles in two layers

weakly-bound regime

Numerical approach in the weakly-bound regime

We compare results, obtained through the numerical minimization
with results, given by this analytical approximation
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Two dipoles in two layers

Conclusions(I)

Two particles

always bound

energy increases as function of the polarization angle
for U → 0

E ∼ −e
− 2

U2A(θ)

Ψ(r) ∼ K0(αr/d)

E < r2 >= const
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Few body configurations

Few body configurations with perpendicular polarization.

Thresholds
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Few body configurations

Three dipoles

Geometry of the interaction

Perpendicular polarization;

2D

V (r , n) =
r2 − 2n2d2

(r2 + n2d2)5/2

where nd - distance in z direction

n = 0: numerical problem

Regularization with Ψ = φ2D

√

1
L
√
π
e
−

∑
i

z2
i

2L2 *

Vr (r) =
1

2
√
2L3

U

(

3

2
, 1,

r2

2L2

)

,

* M.A. Baranov, H. Fehrmann, and M. Lewenstein, PRL 100, 200402 (2008)
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Few body configurations

Three dipoles

The System

2 particles (r1, r2) with dipole moment D1 in one layer;

1 particle (r3) with dipole moment D2 in another;

all with the same mass M.

System b1
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Few body configurations

Three dipoles

The Shrödinger equation

(

−
3

∑

i=1

~
2

2M
~∇2

i + D1D2V (|r1 − r3|, 1) + D1D2V (|r2 − r3|, 1) +

+D1D1Vr (|r1 − r2|)
)

φ2D = ǫ3φ2D ,

Two dimensionless parametres

λa = M D1D2
~2d

- strength of the interaction with attractive core;

λr = M D1D1

~2d
- strength of the repulsive interaction.
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Few body configurations

Three dipoles

Energy dependence of the system of three dipoles

Using the same numerical procedure we get energy of the system
E3 = ǫi

Md2

~2
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E3, λa=10, bosons
E3, λa=10, fermions

2 body threshold

In this example the system is unbound for λr = λa
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Few body configurations

Three dipoles

Stability of the system for λa = λr

the system is bound for sufficiently small ratio λr/λa

the system is unbound for sufficiently big ratio λr/λa

For any given λa there exists a critical repulsive strength, λcr
r (λa)

such that E3(λ
cr
r (λa), λa) = E2(λa)

λcr
r (λa) =

E2(λa)− 〈φ2D |T + λaV13 + λaV23|φ2D〉
〈φ2D |V12|φ2D〉

,
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Few body configurations

Three dipoles

Stability of the system for λa = λr

Proof of instability

prove that ∂λcr
r /λa

∂λa
≥ 0 (direct calculation using that

∂E
∂λa

< φ2D |φ2D >=< φ2D | ∂H∂λa
|φ2D >);

show that for infinetely large value of λa the system is
unstable (compare the minimum of the full potential for three
body with the two body energy).

The system is unstable always for λr > 0.375 × λa
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Few body configurations

Four dipoles

The System

2 dipoles in one layer with dipole moment D1;

1 dipole in layer above with dipole moment D2;

1 dipole in layer below with dipole moment D2.

system c1
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Few body configurations

Four dipoles

Results

The same procedure shows that

the system is unbound for λa = λr ;

system is more bound in a sense that λcr
r (3) < λcr

r (4).

Numerical results for the critical strength *
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* A. G. Volosniev, D. V. Fedorov, A. S. Jensen, N. T. Zinner arXiv:1109.4602v1 (2011)
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Conclusions (II)

Three and Four particles

are always unbound for λa = λr ;

three particles are unbound for all λr > 0.375λa ;

four particles are unbound for all λr > 0.75λa .
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Outlook

Outlook

more particles (7,10) can be bound;

different polarization;

external field;

quasi 2D;

...
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