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Experimentally accessible quantum systems
NATURE-MADE: matter built from atoms, molecules, nuclei,...

”It is fair to state that we are not experimenting
with single particles, any more than
we can raise Ichthyosauria in the zoo”
E. Schrödinger, British J. Philos. Sci. 3, 233 (1952)
experimental system⇒ theory has to be derived

MAN-MADE: individual few-body systems such as quantum
dots, trapped ions or atoms,...

single objects may be experimentally addressed
3D, 2D and even 1D structures can be fabricated
adjustable control parameters (number of constituents N,
trapping potential, interactions between the constituents,...)

theoretical system⇒ may be experimentally fabricated
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Artificial quantum systems: interactions
contact interaction

ultracold atoms trapped in optical lattices or optical microtraps

dipole interaction
ultracold Cr, polar molecules

Coulombic interaction
quantum dots

ions in EM traps
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Anna Okopińska, Przemysław Kościk Correlation properties of few charged bosons in anisotropic traps



Introduction
Theoretical description

Results
Summary

Artificial quantum systems: interactions
contact interaction
ultracold atoms trapped in optical lattices or optical microtraps

dipole interaction
ultracold Cr, polar molecules

Coulombic interaction
quantum dots

ions in EM traps
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Schrödinger equation
Correlation characteristics
Quasi-1D system

System of N Coulombically interacting bodies
Schrödinger equation

Hamiltonian: ρi =
√

y2
i + z2
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Schrödinger equation: ĤΨ(r1, r2, ..., rN) = EΨ(r1, r2, ..., rN)
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- anisotropy of the trap
g = γ

√
m
ωx~3 - Coulomb / longitudinal trapping energy.
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Schrödinger equation: ĤΨ(r1, r2, ..., rN) = EΨ(r1, r2, ..., rN)

H =
N∑

i=1

[−5
2
i

2
+

1
2

x2
i +

1
2
ε2ρ2

i ] +
∑
i<j

g
|ri − rj |

.

ε = ω⊥
ωx

- anisotropy of the trap
g = γ

√
m
ωx~3 - Coulomb / longitudinal trapping energy.
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Correlation measures
Correlation energy

Ecorr = EMF − Eexact (Lövdin 1955)

Statistical correlation coefficient

τij =
〈r1 · r2〉ij − 〈r〉2i
〈r2〉i − 〈r〉2i

(Kutzelnigg 1968)

expectation values weighted with the probability density
|ψ(r1, ..., rN)|2 and integrated over the remaining variables.

Based on one particle reduced density matrix 1-RDM

ρ(r1, r’1) =

∫
Ψ(r1, r2, ..., rN)Ψ(r’1, r2, ..., rN)d3r2...d3rN

Based on two particle reduced density matrix 2-RDM

2ρ(r1, r2, r’1, r’2) =

∫
Ψ(r1, r2, ..., rN)Ψ(r’1, r’2, ..., rN)d3r3...d3rN
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Schrödinger equation
Correlation characteristics
Quasi-1D system

Measures based on 1-RDM
entanglement entropies - global characteristics for pure states

1-RDM admits a Schmidt decomposition

ρ =
∑

λk |vk 〉〈vk |,
∑

λk = 1.

Natural orbitals {vk} form an orthonormal basis in H.
Entanglement is characterized by occupancies {λk}.

von Neumann entropy

S = −Tr [ρ ln ρ] = −∑λk lnλk

Linear entropy

L = 1− Trρ2 = 1−∑λ2
k

Rényi entropies

S(q) = 1
1−q ln

∑
λq

k
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Schrödinger equation
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Quasi-1D system

We consider strong anisotropy case ε� 1
single transverse-mode approximation

The particles assumed to stay in the lowest state of H⊥

N−body wave function approximated by:
Ψ(r1, r2, ..., rN) ≈ ψ(x1, x2, ..., xN)ΠN

i=1ϕ(yi)ϕ(zi)

where ϕ(z) = ( επ )
1
4 e−

εz2
2 .

Integration over ⊥ gives quasi-1D Schrödinger equation

H1Dψ(x1, x2, ..., xN) = E1Dψ(x1, x2, ..., xN)

with H1D =
∑N

i=1[−1
2
∂2

∂x2
i

+ 1
2x2

i ] +
∑

i<j gU1D(xi , xj) + Nε

quasi-1D effective potential:

U1D(x1,x2)=
√

επ
2 e

ε(x2−x1)
2

2 (1−erf [
√

ε
2 |x2−x1|])
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Applicability of the single-mode approximation: N = 2

Comparison of E1D
0 with exact E0 from 3D Hamiltonian

relative error
∆E =

|E0−E1D
0 |
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Anisotropies ε & 5 are sufficiently large for employing the single
mode approximation in calculating GS energy.
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1-RDM in the single-mode approximation
single-mode approximation

1-RDM factorizes to the form

ρ(r, r
′
) = ϕ(y)ϕ(y

′
)ϕ(z)ϕ(z

′
)ρ1D(x , x

′
),

with effective 1D RDM
ρ1D(x , x

′
) =

=
∫
ψ(x , x2, ..., xN)ψ(x

′
, x2, ..., xN)dx2...dxN =

∑
λlvl(x)vl(x

′
)

Linear entropy
L = 1− tr ρ̂2

1D = 1−
∫∞
−∞

∫∞
−∞ ρ

2
1D(x , x ′)dx ′dx = 1−∑l λ

2
l .

We calculate the GS wave function of the quasi-1D Hamiltonian
ψ(x1, x2, ..., xN) with the quantum diffusion algorithm and use it
to determine ρ1D(x , x

′
) and L.
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Strictly 1D limit
divergencies

Interaction potential g
|xi−xj | diverges at xi = xj for g 6= 0.

⇓
UV divergencies in calculating GS wf of a bosonic system!
Usually, divergencies cured by considering strongly anisotropic
3D potential, performing calculation at finite ε and observing the
behavior of GS energy at ε→∞.

no divergencies
Astrakharchik and Girardeau, PRB 83, 153303 (2011)
Bose-Fermi mapping:
GS wf related to the lowest energy antisymmetric wf ψF as
ψ(x1, x2, .., xN) = |ψF (x1, x2, .., xN)|
Bosonic system fermionized. No divergencies in calculating ψF .
We determine ψF using CI with harmonic oscillator basis {ϕho

n }.
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Plot of the effective 1-RDM ρ1D(x , x ′)
large anisotropy, ε = 30 strictly 1D
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At ε = 30 the quasi-1D RDM differs heavily from that of a
genuinely 1D system. Big differences at g . 5.
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At ε = 30 the quasi-1D RDM differs heavily from that of a
genuinely 1D system. Big differences at g . 5.
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Asymptotics in the strictly 1D system

limit of g → 0

ψ(x1, x2, ..., xN) = |ψF (x1, x2, ..., xN)| → 1√
N!
|detN−1,N

n=0,j=0(ϕho
n (xj))|

Lg→0
1D ≈

 0.36 N = 2
0.51 N = 3
0.60 N = 4

limit of g →∞
N = 2 analytic result from the harmonic approximation
V (x1, x2) = 1

2 x2
1 + 1

2 x2
2 +

g
|x2−x1|

≈ 3 g
2
3

2
4
3

+ 1
4 (x1 + x2)

2 + 3
4 (x1 − x2 −

g
1
3

2
1
6
)2

that becomes exact at g →∞ P. Kościk, AO, Phys. Lett. A 374, 3841 (2010)

Lg→∞
1D = 1−

√
−3
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Anna Okopińska, Przemysław Kościk Correlation properties of few charged bosons in anisotropic traps



Introduction
Theoretical description

Results
Summary

Effective 1-RDM
Linear entropy
von Neumann entropy

Asymptotics in the strictly 1D system
limit of g → 0

ψ(x1, x2, ..., xN) = |ψF (x1, x2, ..., xN)| → 1√
N!
|detN−1,N

n=0,j=0(ϕho
n (xj))|

Lg→0
1D ≈

 0.36 N = 2
0.51 N = 3
0.60 N = 4

limit of g →∞
N = 2 analytic result from the harmonic approximation
V (x1, x2) = 1

2 x2
1 + 1

2 x2
2 +

g
|x2−x1|

≈ 3 g
2
3

2
4
3

+ 1
4 (x1 + x2)

2 + 3
4 (x1 − x2 −

g
1
3

2
1
6
)2
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Anna Okopińska, Przemysław Kościk Correlation properties of few charged bosons in anisotropic traps



Introduction
Theoretical description

Results
Summary

Effective 1-RDM
Linear entropy
von Neumann entropy

single-particle density

Comparison ρ(x) ≡ Nρ(x , x) with ρMF (x) = N|φMF (x)|2

φMF determined by self-consistent solution of MF equation:
−1

2
d2φMF (x)

dx2 +
[

1
2x2+g(N−1)

∫∞
−∞|φMF (x

′
)|2U1D(x−x

′
)dx

′
]
φMF (x)=εφMF (x)

g = 0.25 g = 1

g = 2 g = 20

-4 -2 0 2 4
0.0

0.5

1.0

1.5

2.0

x

Ρ
Hx
L

non-interacting
bosons

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

x

-5 0 5
0.0

0.2

0.4

0.6

0.8

x

1

MF fails to describe the internal structure of the system if g & gcr
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Summary and outlook
Systems composed of N=2,3, and 4 Coulombically interacting
particles in a harmonic trap of anisotropy ε are investigated.

Single transverse-mode approximation is valid for ε & 5.
The GS correlation properties of the quasi-1D system:

Linear entropy L increases with increasing interaction strength g. The
trend is initially linear but above gcr quickly saturates to the asymptotic
value which is greater the larger is N. L behaves very similarly to the
von Neumann entropy.
gcr hardly depends on N and roughly coincides with the value at which
MF breaks down. shifting only slightly towards larger values with
increasing N.
an increase in ε results in an increase in L. Entanglement is the largest
in the limit of ε → ∞, when fermionization takes place for any g 6= 0.
Dependence on ε is significant only at weak interaction g . gcr . In this
region the entanglement properties of the quasi-1D system differ
heavily from a genuinely 1D one.
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