Correlation properties of few charged bosons in anisotropic traps

Anna Okopińska, Przemysław Kościk

Jan Kochanowski University in Kielce, Poland

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(< ∃) < ∃)</p>

Outline

- 2 Theoretical description
 - Schrödinger equation
 - Correlation characteristics
 - Quasi-1D system

3 Results

- Effective 1-RDM
- Linear entropy
- von Neumann entropy

Summary

∃ → < ∃ →</p>

Experimentally accessible quantum systems

NATURE-MADE: matter built from atoms, molecules, nuclei,...

∃ > < ∃ >

Anna Okopińska, Przemysław Kościk Correlation properties of few charged bosons in anisotropic traps

Experimentally accessible quantum systems

NATURE-MADE: matter built from atoms, molecules, nuclei,...

"It is fair to state that we are not experimenting with single particles, any more than we can raise Ichthyosauria in the zoo"

→ < Ξ →</p>

Experimentally accessible quantum systems

NATURE-MADE: matter built from atoms, molecules, nuclei,...

"It is fair to state that we are not experimenting with single particles, any more than we can raise Ichthyosauria in the zoo" *E. Schrödinger, British J. Philos. Sci. 3, 233 (1952)*

Experimentally accessible quantum systems

NATURE-MADE: matter built from atoms, molecules, nuclei,...

"It is fair to state that we are not experimenting with single particles, any more than we can raise Ichthyosauria in the zoo" *E. Schrödinger, British J. Philos. Sci. 3, 233 (1952)*

experimental system \Rightarrow theory has to be derived

Experimentally accessible quantum systems

NATURE-MADE: matter built from atoms, molecules, nuclei,...

"It is fair to state that we are not experimenting with single particles, any more than we can raise Ichthyosauria in the zoo" *E. Schrödinger, British J. Philos. Sci. 3, 233 (1952)* experimental system \Rightarrow theory has to be derived

MAN-MADE: individual few-body systems such as quantum dots, trapped ions or atoms,...

Experimentally accessible quantum systems

NATURE-MADE: matter built from atoms, molecules, nuclei,...

"It is fair to state that we are not experimenting with single particles, any more than we can raise Ichthyosauria in the zoo" *E. Schrödinger, British J. Philos. Sci. 3, 233 (1952)* experimental system \Rightarrow theory has to be derived

MAN-MADE: individual few-body systems such as quantum dots, trapped ions or atoms,...

• single objects may be experimentally addressed

Experimentally accessible quantum systems

NATURE-MADE: matter built from atoms, molecules, nuclei,...

"It is fair to state that we are not experimenting with single particles, any more than we can raise Ichthyosauria in the zoo" *E. Schrödinger, British J. Philos. Sci. 3, 233 (1952)* experimental system \Rightarrow theory has to be derived

MAN-MADE: individual few-body systems such as quantum dots, trapped ions or atoms,...

- single objects may be experimentally addressed
- 3D, 2D and even 1D structures can be fabricated

Experimentally accessible quantum systems

NATURE-MADE: matter built from atoms, molecules, nuclei,...

"It is fair to state that we are not experimenting with single particles, any more than we can raise Ichthyosauria in the zoo" *E. Schrödinger, British J. Philos. Sci. 3, 233 (1952)* experimental system \Rightarrow theory has to be derived

MAN-MADE: individual few-body systems such as quantum dots, trapped ions or atoms,...

- single objects may be experimentally addressed
- 3D, 2D and even 1D structures can be fabricated
- adjustable control parameters (number of constituents N, trapping potential, interactions between the constituents,...)

Experimentally accessible quantum systems

NATURE-MADE: matter built from atoms, molecules, nuclei,...

"It is fair to state that we are not experimenting with single particles, any more than we can raise Ichthyosauria in the zoo" *E. Schrödinger, British J. Philos. Sci. 3, 233 (1952)* experimental system \Rightarrow theory has to be derived

MAN-MADE: individual few-body systems such as quantum dots, trapped ions or atoms,...

- single objects may be experimentally addressed
- 3D, 2D and even 1D structures can be fabricated
- adjustable control parameters (number of constituents N, trapping potential, interactions between the constituents,...)

theoretical system \Rightarrow may be experimentally fabricated

Anna Okopińska, Przemysław Kościk

Correlation properties of few charged bosons in anisotropic traps

Artificial quantum systems: interactions

contact interaction

ヘロト ヘワト ヘビト ヘビト

Artificial quantum systems: interactions

contact interaction

ultracold atoms trapped in optical lattices or optical microtraps

Artificial quantum systems: interactions

・ 同 ト ・ ヨ ト ・ ヨ ト

Artificial quantum systems: interactions

→ E → < E →</p>

< 🗇 🕨

Artificial quantum systems: interactions

→ E → < E →</p>

< 🗇 🕨

Artificial quantum systems: interactions

프 🖌 🛪 프 🕨

< 🗇 🕨

Anna Okopińska, Przemysław Kościk

Correlation properties of few charged bosons in anisotropic traps

Schrödinger equation

System of N Coulombically interacting bodies Schrödinger equation

Hamiltonian:

Itonian:

$$\rho_i = \sqrt{y_i^2 + z_i^2}$$

$$H = \sum_{i=1}^N \left[-\frac{\hbar^2 \bigtriangledown_i^2}{2m} + \frac{m}{2} (\omega_x^2 x_i^2 + \omega_\perp^2 \rho_i^2) \right] + \sum_{i < j} \frac{\gamma}{|\mathbf{r}_i - \mathbf{r}_j|},$$

Schrödinger equation Correlation characteristics Quasi-1D system

System of *N* Coulombically interacting bodies Schrödinger equation

Hamiltonian:

$$\rho_i = \sqrt{y_i^2 + z_i^2}$$

$$H = \sum_{i=1}^N \left[-\frac{\hbar^2 \bigtriangledown_i^2}{2m} + \frac{m}{2} (\omega_x^2 x_i^2 + \omega_\perp^2 \rho_i^2) \right] + \sum_{i < j} \frac{\gamma}{|\mathbf{r}_i - \mathbf{r}_j|},$$

after scaling $\mathbf{r} \mapsto \sqrt{\frac{\hbar}{m\omega_x}} \mathbf{r}, E \mapsto \hbar\omega_x E$ Schrödinger equation: $\widehat{H}\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) = E\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$

$$H = \sum_{i=1}^{N} \left[-\frac{\nabla_i^2}{2} + \frac{1}{2}x_i^2 + \frac{1}{2}\epsilon^2 \rho_i^2 \right] + \sum_{i < j} \frac{g}{|\mathbf{r}_i - \mathbf{r}_j|}.$$

Schrödinger equation Correlation characteristics Quasi-1D system

System of *N* Coulombically interacting bodies

Hamiltonian:

$$\rho_i = \sqrt{y_i^2 + z_i^2}$$

$$H = \sum_{i=1}^N \left[-\frac{\hbar^2 \bigtriangledown_i^2}{2m} + \frac{m}{2} (\omega_x^2 x_i^2 + \omega_\perp^2 \rho_i^2) \right] + \sum_{i < j} \frac{\gamma}{|\mathbf{r}_i - \mathbf{r}_j|},$$

after scaling $\mathbf{r} \mapsto \sqrt{\frac{\hbar}{m\omega_x}} \mathbf{r}, E \mapsto \hbar\omega_x E$ Schrödinger equation: $\widehat{H}\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) = E\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$

$$H = \sum_{i=1}^{N} [-rac{
abla_i^2}{2} + rac{1}{2}x_i^2 + rac{1}{2}\epsilon^2
ho_i^2] + \sum_{i < j} rac{g}{|\mathbf{r}_i - \mathbf{r}_j|}.$$

 $\epsilon = rac{\omega_{\perp}}{\omega_{\star}}$ - anisotropy of the trap

Schrödinger equation Correlation characteristics Quasi-1D system

System of *N* Coulombically interacting bodies

Hamiltonian: $\rho_i = \sqrt{y_i^2 + z_i^2}$ $H = \sum_{i=1}^N \left[-\frac{\hbar^2 \bigtriangledown_i^2}{2m} + \frac{m}{2} (\omega_x^2 x_i^2 + \omega_\perp^2 \rho_i^2) \right] + \sum_{i < j} \frac{\gamma}{|\mathbf{r}_i - \mathbf{r}_j|},$

after scaling $\mathbf{r} \mapsto \sqrt{\frac{\hbar}{m\omega_x}} \mathbf{r}, E \mapsto \hbar\omega_x E$ Schrödinger equation: $\widehat{H}\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) = E\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$

$$H = \sum_{i=1}^{N} \left[-\frac{\bigtriangledown_{i}^{2}}{2} + \frac{1}{2}x_{i}^{2} + \frac{1}{2}\epsilon^{2}\rho_{i}^{2} \right] + \sum_{i < j} \frac{g}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}.$$

 $\epsilon = \frac{\omega_{\perp}}{\omega_{x}}$ - anisotropy of the trap $g = \gamma \sqrt{\frac{m}{\omega_{x}\hbar^{3}}}$ - Coulomb / longitudinal trapping energy.

Jon Hochonouski

Schrödinger equation Correlation characteristics Quasi-1D system

Correlation measures

Correlation energy

 $E_{corr} = E_{MF} - E_{exact}$ (Lövdin 1955)

Schrödinger equation Correlation characteristics Quasi-1D system

Correlation measures

Correlation energy

$$E_{corr} = E_{MF} - E_{exact}$$
 (Lövdin 1955)

Statistical correlation coefficient

$$\tau_{ij} = \frac{\langle \mathbf{r}_1 \cdot \mathbf{r}_2 \rangle_{ij} - \langle \mathbf{r} \rangle_i^2}{\langle \mathbf{r}^2 \rangle_i - \langle \mathbf{r} \rangle_i^2}$$
(Kutzelnigg 1968)

expectation values weighted with the probability density

 $|\psi(\mathbf{r}_1,...,\mathbf{r}_N)|^2$ and integrated over the remaining variables.

Schrödinger equation Correlation characteristics Quasi-1D system

Correlation measures

Correlation energy

$$E_{corr} = E_{MF} - E_{exact}$$
 (Lövdin 1955)

Statistical correlation coefficient

$$au_{ij} = rac{\langle \mathbf{r_1} \cdot \mathbf{r_2} \rangle_{ij} - \langle \mathbf{r} \rangle_i^2}{\langle \mathbf{r}^2 \rangle_i - \langle \mathbf{r} \rangle_i^2}$$
 (Kutzelnigg 1968)

expectation values weighted with the probability density $|\psi(\mathbf{r}_1,...,\mathbf{r}_N)|^2$ and integrated over the remaining variables.

Based on one particle reduced density matrix 1-RDM

$$\rho(\mathbf{r}_1, \mathbf{r}_1) = \int \Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) \Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) d^3 r_2 ... d^3 r_N$$

Schrödinger equation Correlation characteristics Quasi-1D system

Correlation measures

Correlation energy

$$E_{corr} = E_{MF} - E_{exact}$$
 (Lövdin 1955)

Statistical correlation coefficient

$$au_{ij} = rac{\langle \mathbf{r_1} \cdot \mathbf{r_2} \rangle_{ij} - \langle \mathbf{r} \rangle_i^2}{\langle \mathbf{r}^2 \rangle_i - \langle \mathbf{r} \rangle_i^2}$$
 (Kutzelnigg 1968)

expectation values weighted with the probability density $|\psi(\mathbf{r}_1,...,\mathbf{r}_N)|^2$ and integrated over the remaining variables.

Based on one particle reduced density matrix 1-RDM

$$\rho(\mathbf{r}_1, \mathbf{r}_1) = \int \Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) \Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) d^3 r_2 ... d^3 r_N$$

Based on two particle reduced density matrix 2-RDM

$${}^{2}\rho(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{1},\mathbf{r}_{2}) = \int \Psi(\mathbf{r}_{1},\mathbf{r}_{2},...,\mathbf{r}_{N})\Psi(\mathbf{r}_{1},\mathbf{r}_{2},...,\mathbf{r}_{N})d^{3}r_{3}...d^{3}r_{N}$$

Anna Okopińska, Przemysław Kościk

Correlation properties of few charged bosons in anisotropic traps

rsitu

Schrödinger equation Correlation characteristics Quasi-1D system

Measures based on 1-RDM

entanglement entropies - global characteristics for pure states

1-RDM admits a Schmidt decomposition

$$\rho = \sum \lambda_k |\mathbf{v}_k\rangle \langle \mathbf{v}_k|, \qquad \sum \lambda_k = \mathbf{1}.$$

ヘロト ヘワト ヘビト ヘビト

Schrödinger equation Correlation characteristics Quasi-1D system

Measures based on 1-RDM

entanglement entropies - global characteristics for pure states

1-RDM admits a Schmidt decomposition

$$\rho = \sum \lambda_k |\mathbf{v}_k\rangle \langle \mathbf{v}_k|, \qquad \sum \lambda_k = 1.$$

Natural orbitals $\{v_k\}$ form an orthonormal basis in \mathcal{H} .

Schrödinger equation Correlation characteristics Quasi-1D system

Measures based on 1-RDM

entanglement entropies - global characteristics for pure states

1-RDM admits a Schmidt decomposition

$$\rho = \sum \lambda_k |\mathbf{v}_k\rangle \langle \mathbf{v}_k|, \qquad \sum \lambda_k = 1.$$

Natural orbitals $\{v_k\}$ form an orthonormal basis in \mathcal{H} . Entanglement is characterized by occupancies $\{\lambda_k\}$.

Schrödinger equation Correlation characteristics Quasi-1D system

Measures based on 1-RDM

entanglement entropies - global characteristics for pure states

1-RDM admits a Schmidt decomposition

$$\rho = \sum \lambda_k |\mathbf{v}_k\rangle \langle \mathbf{v}_k|, \qquad \sum \lambda_k = 1.$$

Natural orbitals $\{v_k\}$ form an orthonormal basis in \mathcal{H} . Entanglement is characterized by occupancies $\{\lambda_k\}$.

von Neumann entropy

$$\mathbf{S} = -Tr[\rho \ln \rho] = -\sum \lambda_k \ln \lambda_k$$

Schrödinger equation Correlation characteristics Quasi-1D system

Measures based on 1-RDM

entanglement entropies - global characteristics for pure states

1-RDM admits a Schmidt decomposition

$$\rho = \sum \lambda_k |\mathbf{v}_k\rangle \langle \mathbf{v}_k|, \qquad \sum \lambda_k = 1.$$

Natural orbitals $\{v_k\}$ form an orthonormal basis in \mathcal{H} . Entanglement is characterized by occupancies $\{\lambda_k\}$.

von Neumann entropy

$$\mathbf{S} = -Tr[
ho\ln
ho] = -\sum \lambda_k \ln\lambda_k$$

inear entropy

$$\mathbf{L} = \mathbf{1} - Tr\rho^2 = \mathbf{1} - \sum \lambda_k^2$$

Schrödinger equation Correlation characteristics Quasi-1D system

Measures based on 1-RDM

entanglement entropies - global characteristics for pure states

1-RDM admits a Schmidt decomposition

$$\rho = \sum \lambda_k |\mathbf{v}_k\rangle \langle \mathbf{v}_k|, \qquad \sum \lambda_k = 1.$$

Natural orbitals $\{v_k\}$ form an orthonormal basis in \mathcal{H} . Entanglement is characterized by occupancies $\{\lambda_k\}$.

von Neumann entropy

$$\mathbf{S} = -Tr[
ho\ln
ho] = -\sum \lambda_k \ln\lambda_k$$

inear entropy

$$\mathbf{L} = \mathbf{1} - Tr\rho^2 = \mathbf{1} - \sum \lambda_k^2$$

Rényi entropies

$$S(q) = \frac{1}{1-q} \ln \sum \lambda_k^q$$

Anna Okopińska, Przemysław Kościk

Correlation properties of few charged bosons in anisotropic traps

Schrödinger equation Correlation characteristics Quasi-1D system

We consider strong anisotropy case $\epsilon \gg 1$

single transverse-mode approximation

The particles assumed to stay in the lowest state of H_{\perp}

Schrödinger equation Correlation characteristics Quasi-1D system

We consider strong anisotropy case $\epsilon \gg 1$

single transverse-mode approximation

The particles assumed to stay in the lowest state of H_{\perp}

N-body wave function approximated by: $\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) \approx \psi(x_1, x_2, ..., x_N) \prod_{i=1}^N \varphi(y_i) \varphi(z_i)$

where
$$arphi(z)=(rac{\epsilon}{\pi})^{rac{1}{4}} e^{-rac{\epsilon z^2}{2}}$$
 .

Schrödinger equation Correlation characteristics Quasi-1D system

We consider strong anisotropy case $\epsilon \gg 1$

single transverse-mode approximation

The particles assumed to stay in the lowest state of H_{\perp}

Schrödinger equation Correlation characteristics Quasi-1D system

We consider strong anisotropy case $\epsilon \gg 1$

single transverse-mode approximation

The particles assumed to stay in the lowest state of H_{\perp}

$$\begin{split} & N-\text{body wave function approximated by:} \\ & \Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_N) \approx \psi(x_1,x_2,...,x_N) \Pi_{i=1}^N \varphi(y_i) \varphi(z_i) \\ & \text{where } \varphi(z) = \left(\frac{\epsilon}{\pi}\right)^{\frac{1}{4}} e^{-\frac{\epsilon z^2}{2}}. \\ & \text{Integration over } \bot \text{ gives quasi-1D Schrödinger equation} \\ & H^{1D}\psi(x_1,x_2,...,x_N) = E^{1D}\psi(x_1,x_2,...,x_N) \\ & \text{with } H^{1D} = \sum_{i=1}^N [-\frac{1}{2}\frac{\partial^2}{\partial x_i^2} + \frac{1}{2}x_i^2] + \sum_{i < j} g U^{1D}(x_i,x_j) + N\epsilon \end{split}$$

quasi-1D effective potential:

 $U^{1D}(x_1,x_2) = \sqrt{\frac{\varepsilon\pi}{2}} e^{\frac{\epsilon(x_2-x_1)^2}{2}} (1 - erf[\sqrt{\frac{\varepsilon}{2}}|x_2 - x_1|])$

Anna Okopińska, Przemysław Kościk

Correlation properties of few charged bosons in anisotropic traps

Jon Hothonouski Universitu

Schrödinger equation Correlation characteristics Quasi-1D system

We consider strong anisotropy case $\epsilon \gg 1$

single transverse-mode approximation

The particles assumed to stay in the lowest state of H_{\perp}

N-body wave function approximated by: $\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) \approx \psi(x_1, x_2, ..., x_N) \prod_{i=1}^N \varphi(y_i) \varphi(z_i)$ where $\varphi(z) = (\frac{\epsilon}{\pi})^{\frac{1}{4}} e^{-\frac{\epsilon z^2}{2}}$. Integration over *L* gives quasi-1D Schrödinger equation $H^{1D}\psi(x_1, x_2, ..., x_N) = E^{1D}\psi(x_1, x_2, ..., x_N)$ with $H^{1D} = \sum_{i=1}^{N} \left[-\frac{1}{2} \frac{\partial^2}{\partial x_i^2} + \frac{1}{2} x_i^2 \right] + \sum_{i < j} g U^{1D}(x_i, x_j) + N \epsilon$ 1 D (X) quasi-1D effective potential: $\epsilon(x_2-x_1)^2$ $U^{1D}(x_1, x_2) =$

Anna Okopińska, Przemysław Kościk

Correlation properties of few charged bosons in anisotropic traps

Universitu

Schrödinger equation Correlation characteristics Quasi-1D system

Applicability of the single-mode approximation: N = 2

Comparison of E_0^{1D} with exact E_0 from 3D Hamiltonian

< □ > < 同 > < 回 > < 回

Schrödinger equation Correlation characteristics Quasi-1D system

Applicability of the single-mode approximation: N = 2

Comparison of E_0^{1D} with exact E_0 from 3D Hamiltonian

Anna Okopińska, Przemysław Kościk

Correlation properties of few charged bosons in anisotropic traps

Schrödinger equation Correlation characteristics Quasi-1D system

1-RDM in the single-mode approximation

single-mode approximation

1-RDM factorizes to the form

$$\rho(\mathbf{r},\mathbf{r}') = \varphi(\mathbf{y})\varphi(\mathbf{y}')\varphi(\mathbf{z})\varphi(\mathbf{z}')\rho_{1D}(\mathbf{x},\mathbf{x}'),$$

with effective 1D RDM $\rho_{1D}(x, x') = \int \psi(x, x_2, ..., x_N) \psi(x', x_2, ..., x_N) dx_2 ... dx_N = \sum \lambda_l v_l(x) v_l(x')$

Schrödinger equation Correlation characteristics Quasi-1D system

1-RDM in the single-mode approximation

single-mode approximation

1-RDM factorizes to the form

$$\rho(\mathbf{r},\mathbf{r}') = \varphi(\mathbf{y})\varphi(\mathbf{y}')\varphi(\mathbf{z})\varphi(\mathbf{z}')\rho_{1D}(\mathbf{x},\mathbf{x}'),$$

with effective 1D RDM $\rho_{1D}(x, x') = \int \psi(x, x_2, ..., x_N) \psi(x', x_2, ..., x_N) dx_2 ... dx_N = \sum \lambda_I v_I(x) v_I(x')$

Linear entropy $L = 1 - tr \hat{\rho}_{1D}^2 = 1 - \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \rho_{1D}^2(x, x') dx' dx$

Schrödinger equation Correlation characteristics Quasi-1D system

1-RDM in the single-mode approximation

single-mode approximation

1-RDM factorizes to the form

$$\rho(\mathbf{r},\mathbf{r}') = \varphi(\mathbf{y})\varphi(\mathbf{y}')\varphi(\mathbf{z})\varphi(\mathbf{z}')\rho_{1D}(\mathbf{x},\mathbf{x}'),$$

with effective 1D RDM $\rho_{1D}(x, x') = \int \psi(x, x_2, ..., x_N) \psi(x', x_2, ..., x_N) dx_2 ... dx_N = \sum \lambda_I v_I(x) v_I(x')$

Linear entropy $L = 1 - tr \hat{\rho}_{1D}^2 = 1 - \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \rho_{1D}^2(x, x') dx' dx = 1 - \sum_{l} \lambda_{l}^2.$

Schrödinger equation Correlation characteristics Quasi-1D system

1-RDM in the single-mode approximation

single-mode approximation

1-RDM factorizes to the form

$$\rho(\mathbf{r},\mathbf{r}') = \varphi(\mathbf{y})\varphi(\mathbf{y}')\varphi(\mathbf{z})\varphi(\mathbf{z}')\rho_{1D}(\mathbf{x},\mathbf{x}'),$$

with effective 1D RDM $\rho_{1D}(x, x') = \int \psi(x, x_2, ..., x_N) \psi(x', x_2, ..., x_N) dx_2 ... dx_N = \sum \lambda_I v_I(x) v_I(x')$

Linear entropy $L = 1 - tr \hat{\rho}_{1D}^2 = 1 - \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \rho_{1D}^2(x, x') dx' dx = 1 - \sum_I \lambda_I^2.$

We calculate the GS wave function of the quasi-1D Hamiltonian $\psi(x_1, x_2, ..., x_N)$ with the quantum diffusion algorithm and use it to determine $\rho_{1D}(x, x')$ and *L*.

Schrödinger equation Correlation characteristics Quasi-1D system

Strictly 1D limit

divergencies

Interaction potential
$$\frac{g}{|x_i-x_j|}$$
 diverges at $x_i = x_j$ for $g \neq 0$.

イロン イロン イヨン イヨン

Schrödinger equation Correlation characteristics Quasi-1D system

Strictly 1D limit

divergencies

Interaction potential
$$\frac{g}{|x_i - x_j|}$$
 diverges at $x_i = x_j$ for $g \neq 0$.
 $\downarrow \downarrow$
UV divergencies in calculating GS wf of a bosonic system!

・ロト ・回ト ・ヨト ・ヨト

Schrödinger equation Correlation characteristics Quasi-1D system

Strictly 1D limit

divergencies

Interaction potential
$$\frac{g}{|x_i-x_j|}$$
 diverges at $x_i = x_j$ for $g \neq 0$.

UV divergencies in calculating GS wf of a bosonic system! Usually, divergencies cured by considering strongly anisotropic 3D potential, performing calculation at finite ϵ and observing the behavior of GS energy at $\epsilon \to \infty$.

Schrödinger equation Correlation characteristics Quasi-1D system

Strictly 1D limit

divergencies

Interaction potential
$$\frac{g}{|x_i-x_j|}$$
 diverges at $x_i = x_j$ for $g \neq 0$.

UV divergencies in calculating GS wf of a bosonic system! Usually, divergencies cured by considering strongly anisotropic 3D potential, performing calculation at finite ϵ and observing the behavior of GS energy at $\epsilon \to \infty$.

no divergencies

Schrödinger equation Correlation characteristics Quasi-1D system

Strictly 1D limit

divergencies

Interaction potential
$$\frac{g}{|x_i-x_j|}$$
 diverges at $x_i = x_j$ for $g \neq 0$.

UV divergencies in calculating GS wf of a bosonic system! Usually, divergencies cured by considering strongly anisotropic 3D potential, performing calculation at finite ϵ and observing the behavior of GS energy at $\epsilon \to \infty$.

no divergencies

Astrakharchik and Girardeau, PRB 83, 153303 (2011)

Schrödinger equation Correlation characteristics Quasi-1D system

Strictly 1D limit

divergencies

Interaction potential
$$\frac{g}{|x_i-x_j|}$$
 diverges at $x_i = x_j$ for $g \neq 0$.

UV divergencies in calculating GS wf of a bosonic system! Usually, divergencies cured by considering strongly anisotropic 3D potential, performing calculation at finite ϵ and observing the behavior of GS energy at $\epsilon \to \infty$.

no divergencies

Astrakharchik and Girardeau, PRB 83, 153303 (2011) Bose-Fermi mapping: GS wf related to the lowest energy antisymmetric wf ψ_F as

$$\psi(x_1, x_2, ..., x_N) = |\psi_F(x_1, x_2, ..., x_N)|$$

Schrödinger equation Correlation characteristics Quasi-1D system

Strictly 1D limit

divergencies

Interaction potential
$$\frac{g}{|x_i-x_j|}$$
 diverges at $x_i = x_j$ for $g \neq 0$.

UV divergencies in calculating GS wf of a bosonic system! Usually, divergencies cured by considering strongly anisotropic 3D potential, performing calculation at finite ϵ and observing the behavior of GS energy at $\epsilon \to \infty$.

no divergencies

Astrakharchik and Girardeau, PRB 83, 153303 (2011) Bose-Fermi mapping:

GS wf related to the lowest energy antisymmetric wf ψ_F as $\psi(x_1, x_2, ..., x_N) = |\psi_F(x_1, x_2, ..., x_N)|$ Bosonic system fermionized.

Schrödinger equation Correlation characteristics Quasi-1D system

Strictly 1D limit

divergencies

Interaction potential
$$\frac{g}{|x_i-x_j|}$$
 diverges at $x_i = x_j$ for $g \neq 0$.

UV divergencies in calculating GS wf of a bosonic system! Usually, divergencies cured by considering strongly anisotropic 3D potential, performing calculation at finite ϵ and observing the behavior of GS energy at $\epsilon \to \infty$.

no divergencies

Astrakharchik and Girardeau, PRB 83, 153303 (2011) Bose-Fermi mapping:

GS wf related to the lowest energy antisymmetric wf ψ_F as $\psi(x_1, x_2, ..., x_N) = |\psi_F(x_1, x_2, ..., x_N)|$ Bosonic system fermionized. No divergencies in calculating ψ_F .

Schrödinger equation Correlation characteristics Quasi-1D system

Strictly 1D limit

divergencies

Interaction potential
$$\frac{g}{|x_i-x_j|}$$
 diverges at $x_i = x_j$ for $g \neq 0$.

UV divergencies in calculating GS wf of a bosonic system! Usually, divergencies cured by considering strongly anisotropic 3D potential, performing calculation at finite ϵ and observing the behavior of GS energy at $\epsilon \to \infty$.

no divergencies

Astrakharchik and Girardeau, PRB 83, 153303 (2011) Bose-Fermi mapping:

GS wf related to the lowest energy antisymmetric wf ψ_F as

$$\psi(x_1, x_2, ..., x_N) = |\psi_F(x_1, x_2, ..., x_N)|$$

Bosonic system fermionized. No divergencies in calculating ψ_F . We determine ψ_F using CI with harmonic oscillator basis $\{\varphi_n^{ho}\}$.

Effective 1-RDM Linear entropy von Neumann entropy

Plot of the effective 1-RDM $\rho_{1D}(x, x')$

Anna Okopińska, Przemysław Kościk

Correlation properties of few charged bosons in anisotropic traps

Effective 1-RDM Linear entropy von Neumann entropy

Plot of the effective 1-RDM $\rho_{1D}(x, x')$

At $\epsilon = 30$ the quasi-1D RDM differs heavily from that of a <u>denuinely 1D system</u>. Big differences at $q \le 5$.

Anna Okopińska, Przemysław Kościk

Correlation properties of few charged bosons in anisotropic traps

Jon Hothonouski Universitu

Effective 1-RDM Linear entropy von Neumann entropy

Ground-state linear entropy

Anna Okopińska, Przemysław Kościk Correlation properties of few charged bosons in anisotropic traps

・ロト ・回ト ・ヨト ・ヨト

Effective 1-RDM Linear entropy von Neumann entropy

Ground-state linear entropy

Effective 1-RDM Linear entropy von Neumann entropy

Asymptotics in the strictly 1D system

Anna Okopińska, Przemysław Kościk Correlation properties of few charged bosons in anisotropic traps

ヘロト ヘワト ヘビト ヘビト

Effective 1-RDM Linear entropy von Neumann entropy

Asymptotics in the strictly 1D system

limit of g
ightarrow 0

Anna Okopińska, Przemysław Kościk Correlation properties of few charged bosons in anisotropic traps

Effective 1-RDM Linear entropy von Neumann entropy

Asymptotics in the strictly 1D system

limit of g
ightarrow 0

$$\psi(x_1, x_2, ..., x_N) = |\psi_F(x_1, x_2, ..., x_N)| \rightarrow \frac{1}{\sqrt{N!}} |det_{n=0, j=0}^{N-1, N}(\varphi_n^{ho}(x_j))|$$

Effective 1-RDM Linear entropy von Neumann entropy

Asymptotics in the strictly 1D system

limit of g ightarrow 0

$$\psi(x_1, x_2, ..., x_N) = |\psi_F(x_1, x_2, ..., x_N)| \to \frac{1}{\sqrt{N!}} |det_{n=0, j=0}^{N-1, N} (\varphi_n^{ho}(x_j))|$$
$$L_{1D}^{g \to 0} \approx \begin{pmatrix} 0.36 & N = 2\\ 0.51 & N = 3\\ 0.60 & N = 4 \end{pmatrix}$$

Effective 1-RDM Linear entropy von Neumann entropy

Asymptotics in the strictly 1D system

limit of g
ightarrow 0

$$\begin{split} \psi(x_1, x_2, ..., x_N) &= |\psi_F(x_1, x_2, ..., x_N)| \to \frac{1}{\sqrt{N!}} |det_{n=0, j=0}^{N-1, N} (\varphi_n^{ho}(x_j))| \\ L_{1D}^{g \to 0} &\approx \begin{pmatrix} 0.36 & N = 2\\ 0.51 & N = 3\\ 0.60 & N = 4 \end{pmatrix} \end{split}$$

limit of $g
ightarrow \infty$

Effective 1-RDM Linear entropy von Neumann entropy

Asymptotics in the strictly 1D system

limit of g
ightarrow 0

$$\psi(x_1, x_2, ..., x_N) = |\psi_F(x_1, x_2, ..., x_N)| \rightarrow \frac{1}{\sqrt{N!}} |det_{n=0, j=0}^{N-1, N} (\varphi_n^{ho}(x_j))|$$
$$L_{1D}^{g \rightarrow 0} \approx \begin{pmatrix} 0.36 & N = 2\\ 0.51 & N = 3\\ 0.60 & N = 4 \end{pmatrix}$$

limit of $g
ightarrow \infty$

N = 2 analytic result

Effective 1-RDM Linear entropy von Neumann entropy

Asymptotics in the strictly 1D system

limit of g ightarrow 0

$$\psi(x_1, x_2, ..., x_N) = |\psi_F(x_1, x_2, ..., x_N)| \to \frac{1}{\sqrt{N!}} |det_{n=0, j=0}^{N-1, N} (\varphi_n^{ho}(x_j))|$$
$$L_{1D}^{g \to 0} \approx \begin{pmatrix} 0.36 & N = 2\\ 0.51 & N = 3\\ 0.60 & N = 4 \end{pmatrix}$$

limit of $g ightarrow \infty$

N = 2 analytic result from the harmonic approximation

$$V(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 + \frac{g}{|x_2 - x_1|} \approx 3\frac{g^{\frac{3}{4}}}{2^{\frac{3}{4}}} + \frac{1}{4}(x_1 + x_2)^2 + \frac{3}{4}(x_1 - x_2 - \frac{g^{\frac{3}{4}}}{2^{\frac{1}{6}}})^2$$

Effective 1-RDM Linear entropy von Neumann entropy

Asymptotics in the strictly 1D system

limit of g ightarrow 0

$$\psi(x_1, x_2, ..., x_N) = |\psi_F(x_1, x_2, ..., x_N)| \to \frac{1}{\sqrt{N!}} |det_{n=0, j=0}^{N-1, N} (\varphi_n^{ho}(x_j))|$$
$$L_{1D}^{g \to 0} \approx \begin{pmatrix} 0.36 & N = 2\\ 0.51 & N = 3\\ 0.60 & N = 4 \end{pmatrix}$$

limit of $g ightarrow \infty$

N = 2 analytic result from the harmonic approximation $V(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 + \frac{g}{|x_2 - x_1|} \approx 3\frac{g^{\frac{2}{3}}}{2\frac{4}{3}} + \frac{1}{4}(x_1 + x_2)^2 + \frac{3}{4}(x_1 - x_2 - \frac{g^{\frac{1}{3}}}{2\frac{1}{6}})^2$ that becomes exact at $g \to \infty$ P. Kościk, AO, Phys. Lett. A 374, 3841 (2010)

Effective 1-RDM Linear entropy von Neumann entropy

Asymptotics in the strictly 1D system

limit of g ightarrow 0

$$\psi(x_1, x_2, ..., x_N) = |\psi_F(x_1, x_2, ..., x_N)| \to \frac{1}{\sqrt{N!}} |det_{n=0, j=0}^{N-1, N} (\varphi_n^{ho}(x_j))|$$
$$L_{1D}^{g \to 0} \approx \begin{pmatrix} 0.36 & N = 2\\ 0.51 & N = 3\\ 0.60 & N = 4 \end{pmatrix}$$

limit of $g ightarrow \infty$

N = 2 analytic result from the harmonic approximation $V(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 + \frac{g}{|x_2 - x_1|} \approx 3\frac{g^{\frac{2}{3}}}{2\frac{4}{3}} + \frac{1}{4}(x_1 + x_2)^2 + \frac{3}{4}(x_1 - x_2 - \frac{g^{\frac{1}{3}}}{2\frac{1}{6}})^2$ that becomes exact at $g \to \infty$ P. Kościk, AO, Phys. Lett. A 374, 3841 (2010) $L_{1D}^{g \to \infty} = 1 - \sqrt{-\frac{3}{2} + \sqrt{3}} \approx 0.52 \quad N = 2$

Effective 1-RDM Linear entropy von Neumann entropy

Asymptotics in the strictly 1D system

limit of g ightarrow 0

$$\psi(x_1, x_2, ..., x_N) = |\psi_F(x_1, x_2, ..., x_N)| \to \frac{1}{\sqrt{N!}} |det_{n=0, j=0}^{N-1, N} (\varphi_n^{ho}(x_j))|$$
$$L_{1D}^{g \to 0} \approx \begin{pmatrix} 0.36 & N = 2\\ 0.51 & N = 3\\ 0.60 & N = 4 \end{pmatrix}$$

limit of $g ightarrow \infty$

$$\begin{split} N &= 2 \text{ analytic result from the harmonic approximation} \\ V(x_1, x_2) &= \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 + \frac{g}{|x_2 - x_1|} \approx 3\frac{g^{\frac{2}{3}}}{2\frac{3}{4}} + \frac{1}{4}(x_1 + x_2)^2 + \frac{3}{4}(x_1 - x_2 - \frac{g^{\frac{1}{3}}}{2\frac{1}{6}})^2 \\ \text{that becomes exact at } g \to \infty \text{ P. Kościk, AO, Phys. Lett. A 374, 3841 (2010)} \\ L_{1D}^{g \to \infty} &= 1 - \sqrt{-\frac{3}{2} + \sqrt{3}} \approx 0.52 \quad N = 2 \\ \text{numerical results:} \qquad L_{1D}^{g \to \infty} \approx \begin{pmatrix} 0.68 & N = 3 \\ 0.77 & N = 4 \end{pmatrix} \end{split}$$

Correlation properties of few charged bosons in anisotropic traps

Effective 1-RDM Linear entropy von Neumann entropy

Comparison of the linear and von Neumann entropies

Anna Okopińska, Przemysław Kościk Correlation properties of few charged bosons in anisotropic traps

・ロト ・ 同ト ・ ヨト ・ ヨト

Effective 1-RDM Linear entropy von Neumann entropy

Comparison of the linear and von Neumann entropies

 $\epsilon = 30$

Anna Okopińska, Przemysław Kościk

Correlation properties of few charged bosons in anisotropic traps

Effective 1-RDM Linear entropy von Neumann entropy

single-particle density

Comparison $\rho(x) \equiv N\rho(x, x)$ with $\rho_{MF}(x) = N|\phi_{MF}(x)|^2$

Anna Okopińska, Przemysław Kościk Correlation properties of few charged bosons in anisotropic traps

ヘロト ヘワト ヘビト ヘビト

Effective 1-RDM Linear entropy von Neumann entropy

single-particle density

Comparison $\rho(x) \equiv N\rho(x, x)$ with $\rho_{MF}(x) = N|\phi_{MF}(x)|^2$

 $\phi_{\textit{MF}}$ determined by self-consistent solution of MF equation:

$$-\frac{1}{2}\frac{d^{2}\phi_{MF}(x)}{dx^{2}}+\left|\frac{1}{2}x^{2}+g(N-1)\int_{-\infty}^{\infty}|\phi_{MF}(x')|^{2}U^{1D}(x-x')dx'\right|\phi_{MF}(x)=\varepsilon\phi_{MF}(x)$$

Effective 1-RDM Linear entropy von Neumann entropy

single-particle density

Comparison $\rho(x) \equiv N\rho(x, x)$ with $\rho_{MF}(x) = N|\phi_{MF}(x)|^2$

 ϕ_{MF} determined by self-consistent solution of MF equation: $-\frac{1}{2}\frac{d^2\phi_{MF}(x)}{dx^2} + \left[\frac{1}{2}x^2 + g(N-1)\int_{-\infty}^{\infty} |\phi_{MF}(x')|^2 U^{1D}(x-x')dx'\right] \phi_{MF}(x) = \varepsilon \phi_{MF}(x)$

★ E > ★ E

Effective 1-RDM Linear entropy von Neumann entropy

single-particle density

Comparison $\rho(x) \equiv N\rho(x, x)$ with $\rho_{MF}(x) = N|\phi_{MF}(x)|^2$

 ϕ_{MF} determined by self-consistent solution of MF equation: $-\frac{1}{2}\frac{d^2\phi_{MF}(x)}{dx^2} + \left[\frac{1}{2}x^2 + g(N-1)\int_{-\infty}^{\infty} |\phi_{MF}(x')|^2 U^{1D}(x-x')dx'\right] \phi_{MF}(x) = \varepsilon \phi_{MF}(x)$

MF fails to describe the internal structure of the system if $g \gtrsim g_{cr}$

Anna Okopińska, Przemysław Kościk

Correlation properties of few charged bosons in anisotropic traps

Summary and outlook

Systems composed of N=2,3, and 4 Coulombically interacting particles in a harmonic trap of anisotropy ϵ are investigated.

★ E → ★ E →

Summary and outlook

Systems composed of *N*=2,3, and 4 Coulombically interacting particles in a harmonic trap of anisotropy ϵ are investigated. Single transverse-mode approximation is valid for $\epsilon \gtrsim 5$.

(< ∃) < ∃)</p>

< 🗇 🕨

Summary and outlook

Systems composed of *N*=2,3, and 4 Coulombically interacting particles in a harmonic trap of anisotropy ϵ are investigated. Single transverse-mode approximation is valid for $\epsilon \gtrsim 5$.

The GS correlation properties of the quasi-1D system:

★ E ► ★ E ►

Summary and outlook

Systems composed of *N*=2,3, and 4 Coulombically interacting particles in a harmonic trap of anisotropy ϵ are investigated. Single transverse-mode approximation is valid for $\epsilon \gtrsim 5$.

The GS correlation properties of the quasi-1D system:

• Linear entropy *L* increases with increasing interaction strength *g*.

★ E ► ★ E ►

Summary and outlook

Systems composed of *N*=2,3, and 4 Coulombically interacting particles in a harmonic trap of anisotropy ϵ are investigated. Single transverse-mode approximation is valid for $\epsilon \gtrsim 5$.

The GS correlation properties of the quasi-1D system:

• Linear entropy *L* increases with increasing interaction strength *g*. The trend is initially linear but above *g*_{cr} quickly saturates to the asymptotic value which is greater the larger is *N*.

- 4 同 ト 4 回 ト 4 回 ト

Summary and outlook

Systems composed of *N*=2,3, and 4 Coulombically interacting particles in a harmonic trap of anisotropy ϵ are investigated. Single transverse-mode approximation is valid for $\epsilon \gtrsim 5$.

The GS correlation properties of the quasi-1D system:

• Linear entropy *L* increases with increasing interaction strength *g*. The trend is initially linear but above *g_{cr}* quickly saturates to the asymptotic value which is greater the larger is *N*. *L* behaves very similarly to the von Neumann entropy.

Systems composed of *N*=2,3, and 4 Coulombically interacting particles in a harmonic trap of anisotropy ϵ are investigated. Single transverse-mode approximation is valid for $\epsilon \gtrsim 5$.

The GS correlation properties of the quasi-1D system:

- Linear entropy *L* increases with increasing interaction strength *g*. The trend is initially linear but above *g_{cr}* quickly saturates to the asymptotic value which is greater the larger is *N*. *L* behaves very similarly to the von Neumann entropy.
- *g_{cr}* hardly depends on *N* and roughly coincides with the value at which MF breaks down. shifting only slightly towards larger values with increasing *N*.

Systems composed of *N*=2,3, and 4 Coulombically interacting particles in a harmonic trap of anisotropy ϵ are investigated. Single transverse-mode approximation is valid for $\epsilon \gtrsim 5$.

The GS correlation properties of the quasi-1D system:

- Linear entropy *L* increases with increasing interaction strength *g*. The trend is initially linear but above *g*_{cr} quickly saturates to the asymptotic value which is greater the larger is *N*. *L* behaves very similarly to the von Neumann entropy.
- *g_{cr}* hardly depends on *N* and roughly coincides with the value at which MF breaks down. shifting only slightly towards larger values with increasing *N*.
- an increase in ϵ results in an increase in L.

Systems composed of *N*=2,3, and 4 Coulombically interacting particles in a harmonic trap of anisotropy ϵ are investigated. Single transverse-mode approximation is valid for $\epsilon \gtrsim 5$.

The GS correlation properties of the quasi-1D system:

- Linear entropy *L* increases with increasing interaction strength *g*. The trend is initially linear but above *g_{cr}* quickly saturates to the asymptotic value which is greater the larger is *N*. *L* behaves very similarly to the von Neumann entropy.
- *g_{cr}* hardly depends on *N* and roughly coincides with the value at which MF breaks down. shifting only slightly towards larger values with increasing *N*.
- an increase in *ϵ* results in an increase in *L*. Entanglement is the largest in the limit of *ϵ* → ∞, when fermionization takes place for any *g* ≠ 0.

Systems composed of *N*=2,3, and 4 Coulombically interacting particles in a harmonic trap of anisotropy ϵ are investigated. Single transverse-mode approximation is valid for $\epsilon \gtrsim 5$.

The GS correlation properties of the quasi-1D system:

- Linear entropy *L* increases with increasing interaction strength *g*. The trend is initially linear but above *g_{cr}* quickly saturates to the asymptotic value which is greater the larger is *N*. *L* behaves very similarly to the von Neumann entropy.
- *g_{cr}* hardly depends on *N* and roughly coincides with the value at which MF breaks down. shifting only slightly towards larger values with increasing *N*.
- an increase in *ϵ* results in an increase in *L*. Entanglement is the largest in the limit of *ϵ* → ∞, when fermionization takes place for any *g* ≠ 0.
- Dependence on ϵ is significant only at weak interaction $g \lesssim g_{cr}$.

Systems composed of *N*=2,3, and 4 Coulombically interacting particles in a harmonic trap of anisotropy ϵ are investigated. Single transverse-mode approximation is valid for $\epsilon \gtrsim 5$.

The GS correlation properties of the quasi-1D system:

- Linear entropy *L* increases with increasing interaction strength *g*. The trend is initially linear but above *g_{cr}* quickly saturates to the asymptotic value which is greater the larger is *N*. *L* behaves very similarly to the von Neumann entropy.
- *g_{cr}* hardly depends on *N* and roughly coincides with the value at which MF breaks down. shifting only slightly towards larger values with increasing *N*.
- an increase in *ϵ* results in an increase in *L*. Entanglement is the largest in the limit of *ϵ* → ∞, when fermionization takes place for any *g* ≠ 0.
- Dependence on *ϵ* is significant only at weak interaction *g* ≤ *g_{cr}*. In this region the entanglement properties of the quasi-1D system differ heavily from a genuinely 1D one.

Universitu