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Introduction



My research purpose:

To apply our own method (Gaussian Expansion Method) to N-body problem.

10-body problems
To establish the following framework

- To calculate any interactions such as central force, spin-orbit
force, tensor force, momentum dependent force, quadratic
spin-orbit force etc.

- To calculate particle conversion interaction such as
AN-2N, NA—=N—2 2 etc.

- To calculate bound states, resonant states and to treat continuum
states



Present status

3-body 4-body 5-body  to 6-body problem

-any interactions done done oartly  nextyear
- particle-conversion done done Not yet
-bound state done done done
resonant state done partly partly
-continuum state partly sartly partly

Few-nucleon systems and hypernuclear physics has been encouraging
my method to develop to the above treatments.

Especially, to treat potential to have high repulsive core and long range talil
IS interesting subject for me.



For this purpose, hypernuclear physics provide us many
challenging subjects.

In hypernuclear physics, we have realistic interactions such as
Nijmegen model (Nijmegen soft core 97, Extended soft core 08, etc)

- To have high repulsive core

-particle conversion interaction such as A N- 2 N coupling.




Another interesting subject is

to solve bound states in “He trimer and
tetramer systems. -
The potential between two “He has -
high repulsive core and long-ranged tail. ~
To solve these systems encourages us

to develop our method, Gaussian
Expansion Method.

2 x10° K

LM2M2 potential

Next, | shall explain our method, Gaussian Expansion Method.




Our few-body caluclational method

Gaussian Expansion Method (GEM), since 1987

* A variational method using Gaussian basis functions

»Take all the sets of Jacobi coordinates

Developed by Kyushu Univ. Group,
Kamimura and his collaborators.

Review article :
E. Hiyama, M. Kamimura and Y. Kino,
Prog. Part. Nucl. Phys. 51 (2003), 223.

High-precision calculations of various 3- and 4-body systems:

Exotic atoms / molecules Light hypernuclel,
3- and 4-nucleon systems, 3-quark systems,
multi-cluster structure of light nuclei,



Gaussian Expansion Method (GEM)
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Radial part : D (r) =1t e/ rn)?

Gaussian | ,
function UnL(R) = RE e~ (B/EN)

. n—1
Gaussian ranges I, =11 a” (n =1 — Nmax)

In geometric Ry — Ry AN (N =1 — Nyw)
progression max

Both the short-range correlations and the exponentially-damped tail
are simultaneously reproduced accurately.



Next, by solving eigenstate problem, we get
eigenenergy E and unknown coefficients C.

(Hin) - E(Nin)\ Chl =0

\ J

e

- S

In principle, we can apply this method to N-body problem.

However,...



By solving eigenstate problem, we get
eigenenergy E and unknown coefficients C,

r

(Hin)' E(Nin)\ Ch| =0

J

The problem:
we need huge memory to calculate N-body systems.

In September in 2011, in KEK, they provide powerful super computer with 256 GB
(HITACHI-SR16000).

| enjoy using this computer.
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Non-strangeness nuclel

N A |
Nucleon can be converted into A.
However, since mass difference between
A AN nucleon and A is large, then probability
of A in nucleus is not large.
N N On the other hand, the mass difference
between A\ and 2 is much smaller, then
A there is significant probability
of 2 in A hypernuclei.
250MeV

80MeV




Interesting Issues for the /A N- 2 N particle conversion
In hypernuclei

(1)How large is the mixing probability of the 2 particle in the
hypernuclei?

(2) How important is the AN— 2 N coupling in the binding
energy of the A hypernuclei?



study of ;‘He and /fH
because both of the spin-doublet states are observed.

B “He
‘ A
0 MeV SHe+ A\
1+
-1.24
O+
-2.39
EXp.

IS the most useful

_B/\
. a
0 MeV 3H+ A\
100
204 U
EXp.



For precise studies of /‘{He and *H , itis highly desirable
to perform full 4-body calculations taking both the NNN/A and NNNX=

channels explicitly.

NNNA + NNN

So far, the following authors succeeded in performing this type of
difficult 4-body calculation and pointed out that the AN— 2 N particle

conversion is very important to make these A=4 hypernuclei bound.

Full 4-body clculations :

1) E. Hiyama et al., Phys. Rev. C65, 011301 (R) (2001).

2) A. Nogga et al., Phys. Rev. Lett. 88, 172501 (2002).
3) H. Nemura et al., Phys. Rev. Lett. 89, 142502 (2002).



Vyn : AV8 potential

Vyy : Nijmegen soft-core '97f potential



NNNA NNNA+ NNNX
—B, (MeV) no 2 n
+
1 (unbound)
o
O (unbound), ...
He+ A e
o -
...... —0.54 1"' o
) 1.0 %
1k 115 .
1
i, .  _ N
_2 39 O+ ., —2.28 0 e 21 %
Exp. 1)+(ii) 2 -mixing
4
He (CAL)

Although the 2_-mixing probability is small,

we find that the 2 -mixing plays an essential role
to make critical stability in these A-4 hypernuclei.
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Another interesting subject is
to solve bound states in “He trimer and

tetramer systems. -
The potential between two “He such -

as LM2M2 potential has

high repulsive core and long-ranged tail.
To solve these systems encourages us
to develop our method, Gaussian
Expansion Method.

4He He

atom atom
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‘He Tetramer
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arXiv : at the end of this month

Variational calculation of *He tetramer ground and excited states

using a realistic pair potential

‘\\LMZMZ potential

with a strong
short-range

M. Kamimura repulsion.
Department of Physics, Kyushu University, Fukuoka 812-8581, Japan,

E. Hiyama
RIKEN Nishina Center, RIKEN, Wako 351-0198, Japan



Outline

1) We take our Gaussian expansion method for few-body
systems that was used in the study of hypernuclear
physics reported in the 1-st part of this talk.

2)We shall show that the binding energy of the ground
state I1s 558. 98 mK and that of excited state iIs
127.33 mK (only 0.93 mK below the trimer).

3)We shall precisely discuss about the short-range
structure of the tetramer ground and excited states and
their asymptotic behavior up to 1000 A.

4)Before presenting the tetramer calculation, we report
a trimer calculation in comparison with |iterature
results In order to show reliability of our method.



“He Trimer
ground and excited states

using LM2M2 potential
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50 — T

Gaussian expansion method for 2x10°K
1)three identical spinless particles i
2)very weakly bound states, o
3)using realistic potential (LM2M2) o

30 LM2M2 potential |

v(r) (K)

(H — E)YU®) = 0. °

hz hQ 0 1 I2 ! lré(A)l l — 10
H=— V?C V2 + Z Vi(ri;), )

2/’%: QMy 1=1<y

We take all the three sets of Jacobi coordinates:

30 3 30

=1 =2 I=



YHe Dimer
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B® = 1.30348 mK and \/{22) = 70.93 A,

the same as those obtained in literature.
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Trimer ground state

(LM2M2 potential)

Present result excellently

agree with |iterature.

trimer ground state
present | Ref.[7]  Ref.[§] Ref.[9]
binding energy B{*) (mK) 126.40 | 126.39 1264  126.40
(T) (mK) 1660.4 1658 1660
(V) (mK) |—-1786.8| —1785  —1787
{rz) (A) 10.96 10.95 10.96
(ri;) (A) 9.616 9.612 9.636
(r;y (A7) 0.134 0.135
(ri;%y (A7) 0.0228 | 0.0230
(r2,) (A) 6.326 6.49 6.32

[7] R. Lazauskas and J. Carbonell, Phys. Rev. A 73 (2006) 062717.

[8] P. Barletta and A. Kievsky, Phys. Rev. A 64 (2001) 042514.

9] V.A. Roudnev, S.L. Yakovlev and S.A. Sofianos, Few-Body Syst. 37 (2005) 179.



Trimer excited state Present result excellently

(LM2M2 potential) agree with |iterature.
trimer excited state
present | Ref.[7]  Ref.[8]  Ref.[9]
binding energy B'* (mK) 2.2706 2.268 2.265  2.2707
(T) (mK) 122.15 122.1 121.9
(VY (mK) |=124.42 | —1245 —124.2
(rz.) (A) 104.5 104.3
(ri;) (A) 84.51 83.53 83.08
(ri;t) (A7) 0.0265 | 0.0267
(ri?) (A7%) ]0.00216 | 0.00218
(r2.) (A) 60.33 59.3

[7] R. Lazauskas and J. Carbonell, Phys. Rev. A 73 (2006) 062717.
[8] P. Barletta and A. Kievsky, Phys. Rev. A 64 (2001) 042514.
9] V.A. Roudnev, S.L. Yakovlev and S.A. Sofianos, Few-Body Syst. 37 (2005) 179.



Strong short-range correlation

Pair correlation (distribution) function y
3 3) (2
PO) = [ 100y |
probability of finding two particles at X .
0.006
*He trimer Already multiplied by
—~ X 14.5
<ooo4r O f N A X 6.0
a\x_ to be normalized
o at the peak
0.002f : .
oo \\(d'mer) Precisely the same shape
o \/\ J  of the short-range
excited state =~} correlations (x<4 A)
" o appear in all the states.
0 5 10

Fig.3 X (A)



Overlap function

4 :
He trimer

N | X exp(—ki ' y)

© o0 o exact

d state

1

L8 excite

Fig.4

1) Asymptotic behavior of the
trimer excited state
IS exactly decaying
up to ~1000 A.

2) Two lines are parallel.
Decaying constants are
the same to each other.

/gf) _ (2)

decaying
constant

This is unexpected,
but, understandable
from the following model:



102

Dimer—1|ike pair model 3 yOP () *He trimer

for asymptotic behavior of =<.{i ™ IR
: : = N [eXp(—Fk1 Y
trimer excired state 5N N
o 0 A e
P ciltn_e’rﬂllfe pair foxp(_ K@) ™
O T \ Sa—
|' [ e —gO IR
\ O ! Yy - g w0 1000
C\ / y (A)

1)Particle a (located far from loosely-bound b and ¢ )
Is not affected by the interaction between b and c,

2) Therefore, the pair a-b at a relative distance x is
asymptotically dimer-|ike.

3)Since x~ y asymptitically, the amplitude of
particle a along y is dimerlike, kﬁé):: 1.(2)




|f we accept this model, we can estimate

(3)/_ p(3) _ mp(2)) binding energy of trimer excited
ABi" (= By B*) state measured from dimer.
by using B(2) only.

The binding energies are written as 00 “He + “He + “He
, o PR RS
B2 — f (k(g )2 -1.3035 mK e dimer
2}?’ || |AB;?
(3) _ (3)12 .
AB” = Q_My(kl ) (trimer),, =1
where p, = %m and p, = %m,

If we take this relation kgg) — (2) |, then we have

3
AB) = ZB(Q) = 0.978mK —- 0.967 mK

B = 2.281 mK 2.2706 mK
Good model ! 3-body calculation




Also, 1f we accept this

dimer—-|1ke pair model 4He + 4He + He+ 4He
for the aSymptotiC behaVior O_F 0.0 ------------------------------------
the tetramer excited state.

b dimer-like pair 126.40 MK cererrerrerreens ( trlmer)V:O
,, il T 4

d: D
O O . Z a (tetramer), =1

e < tetramer excited state.

C

then, we can predict the binding energy
4 4 3
ABP (= BY — B
of the tetramer excited state with respect to the

trimer ground state
as follows:



We can predict this binding energy

“He + “He + “He+ “He

O I O
4 4 3
ABY (- B - B
using the relation 12640 K o N0
2 4
B2 _ 271 kD2, = im AB% )
:; ] (tetramer), =1
_ 3
ABWY = (K{M)2  He =T

and the dimer-like model ( kf” — (2)). \\ O O /,"

We have >

\\
e

/7
7
-
-

We shall check this by
the four-body calculation.

2
AB{Y = ZB® = 0.87 mK ]

hence B4 — 127.27 mK



‘He Tetramer
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There are 5 calculations of tetramer using realistic pair potentials (LM2M2, TTY) .

4He tetramer binding energies ground excited
state state
Method  Reference potential (mK) (mK)
Monte Carlo Lewerenz (1977) TTY 558
Monte Carlo Bressanini et al. (2000) TTY 999.1
Monte Carlo Blume and Greene (2000) LM2M2 557 133
Faddeev  Lazauskas and Carbonell (2006)LM2M2 557.5 127.5
Correlated . Dag et al. (2011) TTY 558 178
potential
giggr?gilc():n cf. Trimer g.s. =126.40
This value was not obtained by bound-state calculation, .|

but was extrapolated from atom-trimer scattering calculation.

So, we intended to confirm this value by our bound-state calculation.



Full 18 sets of Jacobi coordinates for 4-body systems




Tetramer : Convergence of the binding energy

with respect to maximum ang.-momentum (Z..)
tetramer present Faddeev [ 7 ]
1354) (mK) }354) (mK) }354) (mK)
Zmax K_I_H ( K ) K_I_H ( K )
ground excited ground
0  500.71 (185.96) A 348.8
2 55829 (508.62) 127.24 (—) 505.9
4 [ 558.98 ] (532.56) [127.33 |( —) 548.6
6 | 990.0)
8 Only 0.93 mK (=127.33-126.40) | 557.7

below the trimer ground state

In our calculation, | _max =4 is sufficient with totally 29000 symmetric
4-body basis functions.

7] R. Lazauskas and J. Carbonell: Phys.\ReV./A 73 (2006) og2717.



There are 5 calculations of tetramer using realistic pair potentials (LM2M2, TTY) .

4He tetramer binding energies ground excited
state state
Method  Reference potential (mK) (mK)
Monte Carlo Lewerenz (1977) TTY 558
Monte Carlo Bressanini et al. (2000) TTY 959.1
Monte Carlo Blume and Greene (2000) LM2M2 557 133
Faddeev  Lazauskas and Carbonell (2006)LM2M2 557.5 127.5
Correlated «— Das et al. (2011) TTY 558 178
GEM Present (2011) LM2M2 558.98 127.33

We confirmed that there is a very shallow
excited bound state of “He tetramer.



(a) Tetramer —— binding energies and mean values

tetramer ground state excited state

present Faddeev[7] present Faddeev][7]

B (mK) 558.98 | | 557.7 127.33 || 127.5%
(T) (mK) 4282.2 4107 1639.2
(V) (mK) —4841.2  —4665 —1766.5
(r2) (A) 8.43 8.40 54.5 | 34.4%
ri;) (A) 7.70 35.8
(rit) (A7) 0.155 0.0792
(ri?) (A72)  0.0285 0.0117
(r2.) (A) 5.16 33.3

*)As for the excited state, Faddeev bound-state calculation
was not performed, but these results were extrapolated
from the low-enegy scattering calculatlon

7] R. Lazauskas and J. Carbonell Phys. Rev. A 73 (2006)



Strong short-range correlation O O

Pair correlation function along X :

Z
(4 (4 )2 y
P W [“dydz  (v=0,1) ® O
X
i tetramer J Already multiplied by
X 2.76
S 0006 N ] e x 1.36
Lé‘_:, — . — .= X198
= to be normalized
s 0.004 at the peak.
>
0 002k Precisely the same shape
of the short-range
correlations (x< 4 A)
0 , appear in all the states.
0 2 5 10



Overlap function (timer)y=q  (tetramer), =g ;

O (z) = / U6 W dx dy =

\5__’

0.4
(4)
I I\
_ i 2057 (2) tetramer
S i | :
o g §
c T S| : :
2 =L Il 1‘ The excited state is
Ef = a2 o ground state 1 much more dilute state
> £ 4 Vv v=0 than the ground state.
@) | | \
N excited state ]
I \\ v=1
| \\
0 ~
0 10 20 50 100

Fig.9



Overlap function

asymptotic

OW (7) = / 0P W dxdy =

region

(trimer),,—q

(tetramer),,—g 1

%y \\\
/ \
.' ET’O :
\ y Z /
\\ //

S ="

1) Asymptotic behavior of the

tetramer excited state

IS almost exactly decaying
up to ~1000 A.

2) Three lines are parallel.

Decaying constants are
the same to each other.
Y = k) = 1@

D

10" :
0(4)
.. 20u7(2) tetramer
5-\'_A oy
Tcsg 10‘2—:1‘ S, o o o €xact
— 1% -, (trimer excited state)
S {1 N
E ] é et
O> 1074 |
| o .. (dimer)
N v v=0 St J
11
{ 1 ground state
-6, ?g v=1 Ao,
107 excited state
] 1 1 1 L | ;
0 500 1000
Z (A)

Fig.10

) Dimer-like pair model in
asymptotic region works well.



Dimer-like pair model in the asymptotic region

tetramer excited state

di lik '
PP LLL LT PYoN - '}
"‘ .."T_ —————_______,\
- ., T T EEm=mm Y N e
00 ‘o ---------
s “ X ~
N 5 \
K 3
: P ;‘/‘ )
H H —
Y H Z a
‘ .
s K
, K
G‘ .i
* R
0‘ "0
*
.‘.'O “"‘
....IIIIII““

As | mentioned before, the dimer—Iike pair model predicts

2
ABYL) — §B(2) = 0.87 mK —+ 0.93 mK
B = 127.27 mK 127.33 mK

Our 4-body calculation
Very good!



Summary
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Summary (tetramer)

As for the “He trimer ground and excited states,
our results are 1n excellent agreement with those by
| iterature calculations.

We then obtained binding energies of the tetramer
ground and excited states to be 558.98 mK and 127. 33 mK
(0.93 mK below the atom-trimer threshold), respectively.

-We lillustrate the short-range structure and accurate
asymptotic behavior (up to ~1000 A) of the trimer and tetramer
_wave functions.

- Precisely the same shape of the short-range correlations in
the dimer appear in the ground and excited states of trimer
and tetramer.



- The analysis of the asymptotic behavior of the trimer excited
state generates a simple model to predict the binding energy
of the tetramer excited bound state



Thank you!
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