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Metallic (alkali, noble) and semi-conductor (GaAs) 

Nanostructures

Nanoparticles Quantum Wells Quantum Dots

Introduction

We are currently developing models to describe the electron (and spin) 
dynamics in…
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1

Dynamical models:hierarchy

2

quantum classical
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Outline

1) Many-body systems

2) Few-body systems (N < 5)

Critical stability of quantum many-body systems in the time domain

Semiconductor quantum wells

Quasi two-dimensional Gaussian quantum dot

Scales: 

l ~ nm
ne = 6×1016 cm−3

Te ~ 100K
ω0 = 10-12 s
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Motivations (many-body)

We want to characterize the stability of a quantum system 
against a small perturbation, simulating its “environment”

• Small semiconductor devices are good candidates for 
possible applications in the emerging field of quantum 
computing

• To manipulate the electrons it is necessary to resort to 
electric fields, either static (dc) or oscillating (laser pulses)

• For many-electron devices it is therefore of paramount
importance to understand the properties of the self 
consistent electron dynamics and its stabilitywith respect 
to external perturbations
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Dynamical stability: classical vs quantum
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• The Schrödinger equation is 

linear

• Initially close ‘trajectories’ will 

remain close

• No exponential separation
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Quantum stability

• We want to characterize the stability of a quantum system against a small 
perturbation, simulating its “environment”. 

• A. Peres (1984): instead of perturbing the initial condition, perturb the 
Hamiltonian !

• Quantum stability is measured by the quantum fidelity

Ψ(t = 0)

ΨH0
(t)

ΨH (t)

H0

H = H0 +δH
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Quantum fidelity for one-particle systems

• Single particle in a given (classically chaotic) Hamiltonian

• For medium-sized perturbations, the quantum fidelity decays exponentially, with 
a rate equal to the classical Lyapunov exponent

– R. Jalabert and H. M. Pastawski, Phys. Rev. Lett. 86, 2490 (2001)

• The rate is independent on the perturbation δH (universal behavior)

F. M. Cucchietti, H. M. Pastawski and D. A. 
Wisniacki, Phys. Rev. E 65, 045206(R) (2002) 

exp(-λt)

F
(t

)

Review article: Ph. Jacquod and C. Petitjean (2009): Decoherence, entanglement and irreversibility in 
quantum dynamical systems with few degrees of freedom, Advances in Physics, 58, 67-196 (2009)
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Many-particle systems

• All previous works focused on one-body dynamics in a given 
Hamiltonian

• What happens for the case of many interacting particles ?

• We have studied the quantum fidelity for 3 different many-body 
systems, all in the mean-field approximation

– System of interacting electrons : Self-consistent set of quantum 
hydrodynamic equations [Phys. Rev. Lett. 97, 190404 (2006)].

– Quantum wells : Self-consistent Wigner–Poisson system [New J. 
Phys. 11, 013050 (2009)].

– Trapped Bose-Einstein Condensate : Gross-Pitaevskii equation
(nonlinear Schrödinger equation) [Phys. Rev. Lett. 100, 050405 
(2008)].

Coulomb 

interactions
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Quantum wells: a paradigm for confined interacting electrons

• Electron dynamics in finite-size systems

– Semiconductor “quantum wells” and “quantum dots”

– Nanometric devices containing one or more electrons

– Various types of confinement: parabolic, square well, …

Display a number interesting properties:

� Finite size (due to confinement)

� Quantum (size of wave function ~ size of well)

� Collective (electrons interact)

� Nonlinear (strong excitations)
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Many-electron dynamics: a mean-field model

• Wigner-Poisson equations (single-band, effective-mass approximation)

• Total potential:

• Poisson equation for the Hartree potential:

• Anharmonic confinement: 

0
ondistributi                  

y probabilitpseudo Wigner ),,( −=tvxf

1<<K
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Dimensionless parameters

• Normalized Planck constant

• Ratio of electron plasma frequency to 
confinement frequency (“filling fraction”):
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Time-evolution of the Wigner-Poisson system

0xδ

• We solve the Wigner Poisson equations for two
almost identical initial conditions , which differ

for a small initial perturbation.

• Perturbation : Small kick either in real space

(x → x+δx0) or in velocity space (v → v+δv0) 

• Then compute the quantum fidelity:

x

confV

1f 2f

Initial condition:

x0
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Quantum fidelity — results

Cτ

 timecritical  =τC

Initial perturbation

? ?
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Trajectory separation

λ is a sort of “Lyapunov exponent” λ
τ 1

0 =

Mean velocity
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Trajectory separation and critical time

• Conjecture:

The fidelity drop occurs when the 
trajectory separation reaches a critical 
value:

• This means that the initial perturbation has 
been amplified up to a magnitude 
comparable with Planck ’s constant

• Then  using                                      we get         

which correctly reproduces the numerical 
result (both the slope and the constant): 

τC

)exp(0 CC vv λτδδ =

Ehrenfest time

critical value corresponds to a perturbation that is quantum-mechanically large
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Summary of key results

• Critical time is linked to trajectory separation (“Lyapunov exponent”)
– The initial perturbation is amplified until it reaches a certain value (~ Planck ’s constant)

– Only then it starts affecting the fidelity

• Sudden drop (instead of exponential decay) is a non linear effect
– When f1 and f2 start to diverge, also the Hamiltonian diverges (nonlinearity)

– The Hamiltonian, in turns, acts on the evolutions of f1 and f2 , and so on

– The outcome is a faster-than-exponential decay (“snowball effect”)

– Instead, for the single-particle case, the Hamiltonian is fixed, and the evolutions 
diverge only because of the small perturbation. Hence, exponential decay
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• Closed quantum systems (Hamiltonian)

– The evolution is unitary

– Quantum coherence is measured by the quantum fidelity

– Evolution of the wave function:

� with a non-perturbed Hamiltonian: H0 

� with a perturbed Hamiltonian: H = H0 + δH

• Open quantum systems (non-Hamiltonian: quantum Fokk er-Planck)

– The evolution is non-unitary

– Decoherence : deterioration of the “purity” of a quantum state via interaction 

to its environment.

– Pure state (t = 0)  → Mixed state (t > 0) 

Effect of environmental decoherence (external)
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Effect of environmental decoherence (external)

Lindblad form

0=γ

4105 −×=γ

Quantum fidelityγ : relaxation rate
D : diffusion

(à la Zurek)

(positivity of the density matrix)
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Effect of environmental decoherence (external)

Purity:
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Phase-space portrait of the Wigner distribution (with dissipation)

< 0

Two gaussians centered at
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Decoherence

• First mechanism ‘environment-induced decoherence’
- occurring on a timescaleτD
- dissipative

• Second‘ internal decoherence’
- occurring on a timescale equal to τC
- unitary (non-disipative)

Depending on the value of ττττD and ττττC, either mechanism
will dominate in a specific situation
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Conclusions

• Stability of many-particle systems
– Unusual behavior of the quantum fidelity

– Verified for 3 different types of modeling (all mean-field type)
� Quantum hydrodynamics

� Gross-Pitaevskii equation (NLSE)

� Wigner-Poisson model

Is it typical of N-body interacting systems?

• Perspectives
– Exact N-body problem

– Under way: N=2 interacting electrons in a nonparabolic confinement

In collaboration with:
Sebastian Schröter and Javier Madronero
Physics Department, Technische Universität (München/Germany) 
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Quantum fidelity for other N-body system

Trapped Bose-Einstein Condensate
Gross-Pitaevskii equation (nonlinear Schrödinger eq.)
Phys. Rev. Lett. 100, 050405 (2008) 

Quantum Wells
Self-consistent Wigner–Poisson system
New J. Phys. 11, 013050 (2009)

System of Interacting Electrons
Self-consistent set of quantum hydrodynamic equations
Periodic boundary conditions
Phys. Rev. Lett. 97, 190404 (2006)
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Quantum fidelity for other N-body system

Trapped Bose-Einstein Condensate
Gross-Pitaevskii equation (nonlinear Schrödinger eq.)
Phys. Rev. Lett. 100, 050405 (2008) 

W. Ketterle et al (1997)
We predict that the contrast of the interference fringes
will depend on the time t and on the perturbation ε, in a 
manner analogous to the quantum fidelity
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2) Few-body

Atomic ϕϕϕϕ Solid state ϕϕϕϕ
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Le mondes des Nanos…… ..

� Gaussian confinement in 2 dimensions
� Few electrons (2-4) are injected
� One exactly solves the Schrödinger equation

with quantum chemistry methods (CI) (post-Hartree)

� One obtains the real wave-function of the excited states(/KS)

Quasi two-dimensional Gaussian Quantum Dot

z

y

x

T. Sako, PAH and G. H. F. Diercksen, Phys. Rev. B 74, 045329 (2006).
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Le mondes des Nanos…… ..Quasi two-dimensional Gaussian Quantum Dot

Multi-electronic Hamiltonian

Gaussian confinement

Harmonic potential

x

y

1/ >>≡ ωα D

1>α

(h)

(anh)
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Le mondes des Nanos…… ..CI method

Few words about CI…

� Natural set of basis functions is the Hartree-Fock basis set HF
iϕ
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Hartree equations

� We add the Pauli principle � Slater determinants

HF

kk ka∑= ϕψ ψψ Hmin

� The choice of the configuration is an art…especially for the 
molecular case (Tokuei Sako / Tokyo)

Poisson equation

(Open-Mol/gaussians)

CI
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Le mondes des Nanos…… ..Quantum Dots
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Le mondes des Nanos…… ..Quantum Dots
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Le mondes des Nanos…… ..Quantum Dots

W. Low, Phys. Rev. 97, 1664 (1955).

G. D. Saksena, J. Chem. Phys. 31, 839 (1959).
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Le mondes des Nanos…… ..Quantum Dots

Leading
configurations
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Le mondes des Nanos…… ..Quantum Dots
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Oscillator strengthsa � b

Dipolar transitions (laser such that d>>λ
Long wave-length approximation

)

One should verify

For an external harmonic potential, the motion 
of the center-of-mass is completely decoupled 
from the one of the internal degrees of freedom 
[ ∀ the shape of v(r1-r2) ]

Kohn’s 
theorem:
Phys. Rev. 123, 1242 (1961).

Comment: this is true only for an exact treatment of the N-body problem !
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Le mondes des Nanos…… ..Quantum Dots (3 electrons)

Kohn larger e-e / conf.smaller e-e / conf.

125.0=α
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Le mondes des Nanos…… ..Quantum Dots (3 electrons)

� Red shiftof the Kohn mode with the anharmonicities

� For large ωωωω: transitions only at low energy + transitions of 
states having the same « polyad » numbers: those of the center-of-mass

� For small ωωωω: transitions at low and high energy + transitions of states 
having the same « polyad » numbers or differing by 2 from the com.

The e-e interactions are stronger in this case.

smaller e-e / conf. larger e-e / conf.
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Le mondes des Nanos…… ..Quantum Dots (4 electrons)

small ωωωωlarge ωωωω
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Le mondes des Nanos…… ..Messages

� In order to include decoherence processes (interaction with an enviroment) 
in the quantum dynamics: Wigner

The existence of a finite internal decoherence suggests that even in the absence of coupling
to an external environment a many-body quantum system might not, in practice, 
be perfectly reversible !

� The methods of quantum chemistry can be successfully applied to the modelling of few-body 
nanostructures


