

Quantum coherence in many-body and few-body systems

Paul-Antoine HERVIEUX and Giovanni MANFREDI

Institut de Physique et Chimie des Matériaux

University of Strasbourg, France

Critical Stability 2011, Erice, Italy

P. – A. Hervieux, IPCMS, Strasbourg

1

Introduction

We are currently developing models to describe the electron (and spin) dynamics in...

Dynamical models: hierarchy

TW = Wigner transform

Outline

1) Many-body systems

Critical stability of quantum many-body systems in the time domain

Semiconductor quantum wells

2) Few-body systems (N < 5)

Scales:

 $l \sim nm$ $n_e = 6 \times 10^{16} \text{ cm}^{-3}$ $T_e \sim 100 \text{K}$ $\omega_0 = 10^{-12} \text{ s}$

Quasi two-dimensional Gaussian quantum dot

Motivations (many-body)

- Small semiconductor devices are good candidates for possible applications in the emerging field of <u>quantum</u> <u>computing</u>
- To manipulate the electrons it is necessary to resort to electric fields, either static (dc) or oscillating (laser pulses)
- For many-electron devices it is therefore of paramount importance to understand the properties of the self consistent electron dynamics and <u>its stability</u> with respect to external perturbations

We want to characterize the stability of a quantum system against a small perturbation, simulating its "environment"

Dynamical stability: classical vs quantum

$\Delta z(t) \propto \exp(\lambda t)$

Classical

 $\lambda =$ **Lyapunov** exponent

Quantum

- The Schrödinger equation is linear
- Initially close 'trajectories' will remain close
- No exponential separation

$$i\hbar \frac{\partial \psi_1}{\partial t} = H\psi_1$$
$$i\hbar \frac{\partial \psi_2}{\partial t} = H\psi_2$$
$$\frac{d}{dt} \langle \psi_2 | \psi_1 \rangle = 0$$

Quantum stability

- We want to characterize the stability of a quantum system against a small perturbation, simulating its "environment".
- A. Peres (1984): instead of perturbing the initial condition, perturb the Hamiltonian !

• Quantum stability is measured by the **<u>quantum fidelity</u>**

$$F(t) = |\langle \psi_{H_0}(t) | \psi_H(t) \rangle|^2.$$

Quantum fidelity for one-particle systems

- <u>Single particle</u> in a given (classically chaotic) Hamiltonian
- For medium-sized perturbations, the quantum fidelity decays exponentially, with a rate equal to the classical **Lyapunov** exponent
 - R. Jalabert and H. M. Pastawski, Phys. Rev. Lett. 86, 2490 (2001)
- The rate is <u>independent</u> on the perturbation δH (universal behavior)

<u>Review article</u>: Ph. Jacquod and C. Petitjean (2009): Decoherence, entanglement and irreversibility in quantum dynamical systems with few degrees of freedom, Advances in Physics, **58**, 67-196 (2009)

Many-particle systems

- All previous works focused on one-body dynamics in a given Hamiltonian
- What happens for the case of many interacting particles ?
- We have studied the quantum fidelity for **3** different many-body systems, all in the mean-field approximation
 - System of interacting electrons: Self-consistent set of quantum hydrodynamic equations [Phys. Rev. Lett. 97, 190404 (2006)].
 - Quantum wells: Self-consistent Wigner–Poisson system [New J. Phys. 11, 013050 (2009)].
 - Trapped Bose-Einstein Condensate: Gross-Pitaevskii equation (nonlinear Schrödinger equation) [Phys. Rev. Lett. 100, 050405 (2008)].

Coulomb

interactions

Quantum wells: a paradigm for confined interacting electrons

• Electron dynamics in finite-size systems

- Semiconductor "quantum wells" and "quantum dots"
- Nanometric devices containing one or more electrons
- Various types of confinement: parabolic, square well, ...

Display a number interesting properties:

- Finite size (due to confinement)
- Quantum (size of wave function ~ size of well)
- Collective (electrons interact)
- Nonlinear (strong excitations)

Many-electron dynamics: a mean-field model

• Wigner-Poisson equations (single-band, effective-mass approximation)

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + \frac{im_*}{2\pi\hbar} \iint d\lambda \, dv' e^{im_*(v-v')\lambda} f(x, v', t) \times \left[V \left(x + \frac{\lambda\hbar}{2}, t \right) - V \left(x - \frac{\lambda\hbar}{2}, t \right) \right] = 0 \qquad f(x, v, t) = \text{Wigner pseudo-probability}$$
distribution

- Total potential: $V = V_{\rm H} + V_{\rm conf}$
- Poisson equation for the Hartree potential:

$$\frac{\partial^2 V_{\rm H}}{\partial x^2} = \frac{e^2}{\varepsilon} \int_{-\infty}^{\infty} f \, \mathrm{d}v$$

• Anharmonic confinement: $V_{\text{conf}}(x) = \frac{1}{2}m_*\omega_0^2(x^2 + Kx^4)$. $K \ll 1$

Dimensionless parameters

Normalized Planck constant

$$H = \hbar \omega_0 / k_{\rm B} T_{\rm e} = \hbar / \sigma_x \sigma_{\rm p}$$

• Ratio of electron plasma frequency to confinement frequency ("filling fraction"):

$$\eta = \omega_{\rm p}^2 / \omega_0^2 \qquad \qquad \omega_{\rm p} = (e^2 n_{\rm e} / m \varepsilon_0)^{1/2}$$

Time-evolution of the Wigner-Poisson system

Initial condition:

$$f_0(x, v) = \frac{n_e}{\sqrt{2\pi}\sigma_p} \exp\left(-\frac{(x - x_0)^2}{2\sigma_x^2} - \frac{{m_*}^2 v^2}{2\sigma_p^2}\right)$$

- We solve the Wigner Poisson equations for <u>two</u> <u>almost identical initial conditions</u>, which differ for a small initial perturbation.
- **Perturbation** : Small kick either in real space $(x \rightarrow x + \delta x_0)$ or in velocity space $(v \rightarrow v + \delta v_0)$
- Then compute the quantum fidelity:

$$F(t) = \frac{2\pi\hbar}{m_*N^2} \iint f_1(x, v, t) f_2(x, v, t) \,\mathrm{d}x \,\mathrm{d}v$$

Quantum fidelity — results

Trajectory separation

Trajectory separation and critical time

- $\delta v_{\rm C} \simeq \hbar / m_* \sigma_x = H v_{\rm th}$ **Conjecture:** 10^{-5} $\delta v / v_{th}$ The fidelity drop occurs when the trajectory separation reaches a critical 10^{-10} value: $\delta v_{\rm C} \simeq \hbar/m_* \sigma_x = H v_{\rm th}$ critical value corresponds to a perturbation that is quantum-mechanically large $\tau_{\rm C}$ 10^{-15} This means that the initial perturbation has ٠ 100 200 300 0 been amplified up to a magnitude
 - comparable with **Planck**'s constant

• Then using
$$\delta v_C = \delta v_0 \exp(\lambda \tau_C)$$
 we get

$$\tau_{\rm C} = -\frac{1}{\lambda} \left[\ln \left(\frac{\delta v_0}{v_{\rm th}} \right) - \ln H \right]$$

Ehrenfest time

ωot

which correctly reproduces the numerical result (both the slope and the constant):

$$\tau_{\rm C} = -\tau_0 \ln \delta v_0 + {\rm const.}$$

Summary of key results

- Critical time is linked to trajectory separation ("Lyapunov exponent")
 - The initial perturbation is amplified until it reaches a certain value (~ Planck's constant)
 - Only then it starts affecting the fidelity
- Sudden drop (instead of exponential decay) is a nonlinear effect
 - When f_1 and f_2 start to diverge, also the Hamiltonian diverges (nonlinearity)
 - The Hamiltonian, in turns, acts on the evolutions of f_1 and f_2 , and so on
 - The outcome is a faster-than-exponential decay ("snowball effect")
 - Instead, for the single-particle case, the Hamiltonian is fixed, and the evolutions diverge only because of the small perturbation. Hence, exponential decay

Effect of environmental decoherence (external)

- Closed quantum systems (Hamiltonian)
 - The evolution is **unitary**
 - Quantum coherence is measured by the quantum fidelity
 - Evolution of the wave function:
 - \succ with a non-perturbed Hamiltonian: H_0
 - \succ with a perturbed Hamiltonian: $H = H_0 + \delta H$

• Open quantum systems (non-Hamiltonian: quantum Fokker-Planck)

- The evolution is **non-unitary**
- Decoherence : deterioration of the "purity" of a quantum state via interaction to its environment.
- Pure state $(t = 0) \rightarrow \text{Mixed state } (t > 0)$

Effect of environmental decoherence (external)

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + \frac{im_*}{2\pi\hbar} \iint d\lambda \, dv' e^{im_*(v-v')\lambda} f(x, v', t) \\ \times \left[V\left(x + \frac{\lambda\hbar}{2}, t\right) - V\left(x - \frac{\lambda\hbar}{2}, t\right) \right] = \left(\frac{\partial f}{\partial t}\right)_{\text{scatt}} \quad (a \text{ la Zurek})$$

$$\left(\frac{\partial f}{\partial t}\right)_{\text{scatt}} = 2\gamma \frac{\partial(vf)}{\partial v} + D_v \frac{\partial^2 f}{\partial v^2} + D_x \frac{\partial^2 f}{\partial x^2} \qquad D_v D_x \ge \gamma^2 \hbar^2 / 4m_*^2 \qquad \text{Lindblad form} \\ D_v = \gamma v_{\text{th}}^2 \qquad D_v = \gamma v_{\text{th}}^2$$

 γ : relaxation rate D : diffusion

Quantum fidelity

Effect of environmental decoherence (external)

Purity:
$$\Sigma(t) = \frac{2\pi\hbar}{m_*N^2} \iint f^2 \,\mathrm{d}x \,\mathrm{d}v$$

 $0 \leq \Sigma \leq 1$ for a mixed-quantum state $\Sigma = 1$ for a pure state

Phase-space portrait of the Wigner distribution (with dissipation)

Two gaussians centered at $x = \pm d/2$

$$\omega_0 \tau_{\rm D} = 142$$

- First mechanism 'environment-induced decoherence'
 - occurring on a timescale $\tau_{_{\rm D}}$
 - dissipative
- <u>Second</u> 'internal decoherence'
 - occurring on a timescale equal to $\tau_{\rm C}$
 - unitary (non-disipative)

Depending on the value of τ_D and τ_C , either mechanism will dominate in a specific situation

Conclusions

• Stability of many-particle systems

- Unusual behavior of the quantum fidelity
- Verified for 3 different types of modeling (all mean-field type)
 - Quantum hydrodynamics
 - Gross-Pitaevskii equation (NLSE)
 - Wigner-Poisson model

Is it typical of N-body interacting systems?

• Perspectives

- Exact N-body problem
- Under way: *N*=2 interacting electrons in a nonparabolic confinement

In collaboration with: Sebastian Schröter and Javier Madronero Physics Department, Technische Universität (München/Germany)

Quantum fidelity for other N-body system

System of Interacting Electrons

Self-consistent set of quantum hydrodynamic equations Periodic boundary conditions Phys. Rev. Lett. **97**, 190404 (2006)

Trapped Bose-Einstein Condensate

Gross-Pitaevskii equation (nonlinear Schrödinger eq.) Phys. Rev. Lett. **100**, 050405 (2008)

Quantum Wells Self-consistent Wigner–Poisson system New J. Phys. **11**, 013050 (2009)

Quantum fidelity for other N-body system

Trapped Bose-Einstein Condensate

Gross-Pitaevskii equation (nonlinear Schrödinger eq.)

Phys. Rev. Lett. 100, 050405 (2008)

W. Ketterle et al (1997)

We predict that the contrast of the interference fringes will depend on the time *t* and on the perturbation ε , in a manner analogous to the quantum fidelity

2) Few-body

Many electron problems in non-Coulombic potential fields

Critical Stability 2011, Erice, Italy

P. – A. Hervieux, IPCMS, Strasbourg

Quasi two-dimensional Gaussian Quantum Dot

- \rightarrow Gaussian confinement in 2 dimensions
- \rightarrow Few electrons (2-4) are injected
- → One exactly solves the Schrödinger equation with **quantum chemistry methods** (CI) (post-Hartree)
- \rightarrow One obtains the <u>real wave-function of the excited states</u> (/KS)

T. Sako, PAH and G. H. F. Diercksen, Phys. Rev. B 74, 045329 (2006).

Quasi two-dimensional Gaussian Quantum Dot

CI method

Few words about CI...

 \rightarrow Natural set of basis functions is the Hartree-Fock basis set φ_i^{HF}

 \rightarrow We add the Pauli principle \rightarrow Slater determinants

CI
$$\longrightarrow \psi = \sum_{k} a_{k} \varphi_{k}^{HF} \longrightarrow \min \langle \psi | H | \psi \rangle$$

→ The choice of the configuration is an art...especially for the molecular case (Tokuei Sako / Tokyo) (Open-Mol/gaussians)

Hartree-Fock orbitals

Two-types of electron modes

Circular mode $|l_z| = 4$

Breathing mode

n = 4

Polyad quantum number v_p

W. Low, Phys. Rev. 97, 1664 (1955).

G. D. Saksena, J. Chem. Phys. 31, 839 (1959).

	5	State	Configuration	Weight	V _P
	2e	*1 ¹ Σ ⁺	([0,0] <i>a</i> ,) ²	0.84	0
	100011	1 ¹ Π	$([0,0]\sigma_{s})([1,0]\pi_{s})$	0.76	1
		$2^{1}\Pi_{n}$	$([1,0]\pi_{u})([2,0]\sigma_{e})$	0.31	3
		3 ¹ П.,	$([0,0]\sigma_{q})([3,0]\pi_{q})$	0.54	3
		*1 ³ Π.	$([0,0]\sigma_{a})([1,0]\pi_{a})$	0.86	1
		1 ³ Σ+	$([0,0]\sigma_{\rho})([2,0]\sigma_{\rho})$	0.80	2
		$1^{3}\Delta_{e}^{3}$	$([0,0]\sigma_{\rho})([2,0]\delta_{\rho})$	0.82	2
		$1^{3}\Sigma_{\sigma}^{3}$	$([1,0]\pi_{\mu})([1,0]\pi_{\mu})$	0.77	2
		$2 {}^{3}\Delta_{g}^{a}$	$([0,0]\sigma_g)([4,0]\delta_g)$	0.28	4
	3 <i>e</i>	*1 ² Π _µ	$([0,0]\sigma_g)^2([1,0]\pi_u)$	0.70	1
		$1 {}^{2}\Sigma_{g}^{+}$	$([0,0]\sigma_g)^2([2,0]\sigma_g)$	0.43	2
		$2 2 \Sigma_{g}^{+}$	$([0,0]\sigma_g)([1,0]\pi_u)^2$	0.37	2
- 11		$2^{2}\Delta_{g}$	$([0,0]\sigma_g)^2([2,0]\delta_g)$	0.43	2
Leading		$1 2 \Sigma_{g}^{2}$	$([0,0]\sigma_g)([1,0]\pi_u)([1,0]\pi_u)$	0.63	2
Leaung		$2^{2}\Sigma_{g}^{2}$	$([0,0]\sigma_g)([2,0]\delta_g)([2,0]\delta_g)$	0.16	4
-		3 ² Δ	$([0,0]\sigma_g)([2,0]\delta_g)([2,0]\sigma_g)$	0.22	4
configurations		3 ² Σ ⁺	$([0,0]\sigma_g)([2,0]\sigma_g)^2$	0.26	4
computations		$3^{2}\Sigma_{p}^{5}$	$([0,0]\sigma_g)([1,0]\pi_u)([3,0]\pi_u)$	0.44	4
C		*1 ⁴ Σ _g ⁻	$([0,0]\sigma_g)([1,0]\pi_u)([1,0]\pi_u)$	0.88	2
		1 ⁴ Π _µ	$([0,0]\sigma_g)([1,0]\pi_u)([2,0]\sigma_g)$	0.85	3
		2 ⁴ Π _u	$([0,0]\sigma_g)([1,0]\pi_u)([2,0]\delta_g)$	0.84	3
		3 ⁴ II _n	$([0,0]\sigma_g)([1,0]\pi_u)([4,0]\delta_g)$	0.33	5
	4e	*1 ¹ Δ _g	$([0,0]\sigma_g)^2([1,0]\pi_u)^2$	0.56	2
		$1 \Pi_{\mu}$	$([0,0]\sigma_g)^2([1,0]\pi_u)([2,0]\delta_g)$	0.34	3
		$2 \Pi_{\mu}$	$([0,0]\sigma_g)^2([1,0]\pi_u)([2,0]\sigma_g)$	0.32	3
		$1 {}^{1}\Phi_{\mu}$	$([0,0]\sigma_g)^2([1,0]\pi_u)([2,0]\delta_g)$	0.50	3
		3 ¹ П _и	$([0,0]\sigma_g)([1,0]\pi_u)^2([1,0]\pi_u)$	0.21	3
		$3 {}^{1}\Phi_{\mu}$	$([0,0]\sigma_g)^2([1,0]\pi_u)([4,0]\gamma_g)$	0.23	5
		5 ¹ П _и	$([0,0]\sigma_g)^2([1,0]\pi_u)([4,0]\sigma_g)$	0.15	5
		$4 {}^{1}\Phi_{\mu}$	$([1,0]\pi_u)([1,0]\pi_u)^2([2,0]\delta_g)$	0.16	5
		$^{*}1^{3}\Sigma_{g}^{-}$	$([0,0]\sigma_g)^2([1,0]\pi_u)([1,0]\pi_u)$	0.62	2
		2 ³ П"	$([0,0]\sigma_g)^2([1,0]\pi_u)([2,0]\sigma_g)$	0.45	3
		3 ³ П _и	$([0,0]\sigma_g)^2([1,0]\pi_u)([2,0]\delta_g)$	0.29	3
		4 ³ Π _μ	$([0,0]\sigma_g)^2([1,0]\pi_u)([1,0]\pi_u)([3,0]\pi_u)$	0.12	5
		5 ³ П _и	$([0,0]\sigma_g)^2([1,0]\pi_u)([2,0]\delta_g)([2,0]\delta_g)$	0.11	5
		*1 ⁵ Δ _g	$([0,0]\sigma_g)([1,0]\pi_u)([1,0]\pi_u)([2,0]\delta_g)$	0.87	4
		1 ⁵ Φ_{μ}	$([0,0]\sigma_g)([1,0]\pi_u)([2,0]\delta_g)([2,0]\sigma_g)$	0.38	5
		1 ⁵ П	$([0,0]\sigma_g)([1,0]\pi_u)([1,0]\pi_u)([3,0]\pi_u)$	0.59	5
		2 ⁵ Φ ₁₁	$([0,0]\sigma_{e})([1,0]\pi_{u})([1,0]\pi_{u})([3,0]\phi_{u})$	0.59	5
		2 ⁵ П"	$([0,0]\sigma_{r})([1,0]\pi_{u})([2,0]\delta_{r})([2,0]\delta_{r})$	0.69	5
	2	3 ⁵ П _и	$([0,0]\sigma_g)([1,0]\pi_y)([2,0]\delta_g)([2,0]\sigma_y)$	0.38	5
Critical Stability 2011, Erice, Italy		33	P .	-A Hervie	

Dipolar transitions (laser such that $\lambda >> d$)

Long wave-length approximation

a
$$\rightarrow$$
 b $f_{ba} = 2(E_b - E_a) \left| \left\langle \psi_b \left| \sum_{i=1}^{N_e} z_i \right| \psi_a \right\rangle \right|^2$

Oscillator strengths

One should verify

 $\sum_{b} f_{ba} = N_e$ TRK sum rule

Kohn's theorem: Phys. Rev. **123**, 1242 (1961). For an external harmonic potential, the motion of the center-of-mass is completely decoupled from the one of the internal degrees of freedom [\forall the shape of v(\mathbf{r}_1 - \mathbf{r}_2)]

<u>Comment</u>: this is true only for an exact treatment of the *N*-body problem !

Quantum Dots (3 electrons)

Critical Stability 2011, Erice, Italy

P. – A. Hervieux, IPCMS, Strasbourg

Quantum Dots (3 electrons)

smaller e-e / conf. $\omega = 1.0$

 \rightarrow <u>Red shift</u> of the Kohn mode with the <u>anharmonicities</u>

 \rightarrow For large ω : transitions only at low energy + transitions of states having the same « polyad » numbers: those of the center-of-mass

→ For small ω : transitions at low and high energy + transitions of states having the same « polyad » numbers or differing by 2 from the *com*. The e-e interactions are stronger in this case.

Quantum Dots (4 electrons)

 \rightarrow In order to include decoherence processes (interaction with an environment) in the quantum dynamics: Wigner

The existence of a finite internal decoherence suggests that even in the absence of coupling to an external environment a many-body quantum system might not, in practice, be perfectly reversible !

 \rightarrow The methods of **quantum chemistry** can be successfully applied to the modelling of few-body nanostructures