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The 3-body problem

m The problem of 3-particles interacting via short range 2-body forces
was well studied.

m Here we want to discuss the “photodisintegration” response of the
trimer at threshold.

m We use a simple Hamiltonian

h2 2
2 1<J
m Which we write in dimensionless form
U = eV

[Z %Vf + Y gU(x)

1<j

m

lWherex:,ur,g:;;“—

3, €= h’;‘% and U(zx) is a Gaussian or a
Yukawa potential.
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LThe Hamiltonian

Solving the Schroedinger Equation

1. Remove the center of mass and introduce hyperspherical coordinates

P T4~ R il Ay — p= [+ 13+ .+ 13,9
2. Expand the wave function using hyperspherical harmonics

U(p, Q)= > Rup)Vu(Q)

K<Kmaz
3. Calculate the matrix elements
Vikiwr) (p) = (K] Y Vigl[K'])
4. Solve the eigenvalue problem

2 . -2
{1(8 34—40 K v — B

2l afw)”“”
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L

—The Hamiltonian

The Ground state

Binding energy

Effective range and RMS
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Real Photon

’ o(w) = 472 0wR (w)
R(w) = ;Z;I(‘I’f T (a)| Wo)|* 6(Ef — Eo — w) (Eo,Ry)

Where
Tx(q) = (_)A\/ﬁz V2J + 1[Esx(q) + AMa(q)]
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and
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The Siegert theorem

m Conserved current must fulfill

[a-J(a) = w(q)]

Substituting this result we get
Ejx(q) = E3\(q) + EX\(q)
here the Si tt is gi b
Where the Siegert term is given by (EO,P )

J—|—1w
Ej\(q) = \/ /dQI) )YiA(q)

and the correction term (lower by ¢?) is
given by

/2J—|—1
EJ,\ /quJJ+11 )J( )

For low energy photons ¢R < 1 the
Siegert term is dominant.
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A Model for “Photodisintegration”

m We consider a system of nutral particles.

m We assume that the each particle can absorb
a photon like quantity. (Ef P )

m Utilizing the Siegert theorem the excitation
operator is proportional to the particle
density.

m The long wavelength approximation is valid

(E01 PO)

m For identical particles the dipole operator
vanishes.

m the quadrupole opertor is the leading term

R(w) =Y _[(fIQI0)*S(E; — Eo — w)
1

where

Q = CMZT?YQO(fi)
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Calculating the Response

The response function

R(w) = /d«z)f\wi 10| 5)26(Es — E; — w)

Transformed with Lorentzian kernel

2
\ |2

L(o) = /(/w% o /(/l.'/, “x\l‘,/ “() z,)\ N
. (w—0)2+1" . (By —E; —o0)?+ 1
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Calculating the Response

The response function

R(w) = /d«z)f\wi 10| 5)26(Es — E; — w)

Transformed with Lorentzian kernel

_ Rw) |_ (s 10 i)
Uo) = [t =i | = [ e

The transform can be written as
L ‘ . 1 1 A
L(U):/(]l'f‘(:l', | O | )= - — — - — (g | O | )
) ) VEy—FEi—0c—il'Ey —E; —o+1l
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Calculating the Response

The response function

R(w) = /d«z)f\wi 10| 5)26(Ey — Er — w)

Transformed with Lorentzian kernel

_ Rw) |_ (s 10w
Uo) = [t i | = [ e

The transform can be written as

~ 1 1 ~
L = i - - i
@ = [ @it | Ol b) g—5 = —p e ¥ 10190
Or
' A ] ] 2
= A |O— N | ——— O | )
Lio) ,/”/\' OB o |V g5 7P
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The Lorentz Integral transform (LIT) method
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The Lorentz Integral transform (LIT) method

Using closure

Lo) = (W]0 ! !

H-FE,—c—i{l'H—-FE; —oc+1

Ol 4i) = (¥ 14)
| ) is the solution of the Schrodinger like equation

(H — By — o +i0) | 9) = O | o).
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The Lorentz Integral transform (LIT) method

Using closure

Lo) = (|0 ! !

H-FE,—c—i{l'H—-FE; —oc+1

Ol 4i)=(|¥)
| 4) is the solution of the Schrédinger like equation

(H—Ey—o+iT) | ) = O | ¥o).

The LIT equation is just the Schrédinger equation with a source.

The only solution to the homogeneous equation is the trivial 1; =0
solution.

Since the source is localized 1/; —>0asr — oo.
The LIT equation can be solved using bound state methods !!!

R(w) is obtained trough inversion of the transform, L(o).

V. Efros, W. Leidemann, and G .Orlandini, PLB 238, 130-(1994).
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Photodisintegration Sum Rules

Sh

/ dww" R(w)
Wth

m Exists if R(w) — 0 faster than w™""".

m Can be expressed as GS observable utilizing the closure of the

eigenstates of H.

8
I

(0[O, [H, O]] 0) = (0]O (H — Eo) O|0)

So = (0/0O|0)

S = (05—

—-0l)
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L Sum Rule

Naive Scaling

m Using simple dimensional arguments we expect that

r~1/VE
m The Quadrupole operator behaves as 72 so
R(w) ~r*/E ~1/E®
m It follows that the sum rules should fulfill

S, ~1/E*"

So ~1/E?
S, ~1/E°
So/S-1~E



log;((Sum Rule) [a.u.]

2.5

1.5

-2.6

Sy ——

~ S—

&
-

\l \\
T .
‘\\\'
24 22 -1.8  -1.6 -14 -12 -1 -0.8 -0.6
log;(B.E. [a.u.]
SO — AOE71.34

.4 = A_1E_2'13



Photo 3

Potential dependence

4 . .
Gaussian  []
\E Yukawa []
EN ‘
35 \\& Soper 1398 — 1
— 3 Q\EQ\
) \
225 =
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N \S\
= 2 \S\
1.5
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L Sum Rules

Naive scaling doesn’t work !!!

A For So we got a power of 1.33
instead of 2.

B For S_i we got a power of 2.13
instead of 3.

C The results seems to be
independent of the short range
specifications of the potential.
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Last comment - The Matter Radii

The Radii behaves as

07
—0.28
Trms = CFE

o
o

o
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7

o
w

.

log;o(Radius) [a.u.]

I
¥}

.

15 1
log;o(B.E.) [a.u]
Utilizing this result we see that

o

RS

-0.5 0

0
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—1.34 4
SO = AOE ~ Trms

—2.13 7
S—l = A—lE ~ Trms
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Summary and Conclusions

We have studied the Quadrupole response of a bosonic trinmer near
threshold.

We have seen that the response function diverge as E3 — 0.
The sum-rules Sp, S_1 diverge as well.

We note that the divergence pattern of the sum-rules doesn’t follow the
simple dimensional analysis.

The exponents seems to be universal.

Thanks, It’s a great workshop !!!
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