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Photo 3-Bosons

The Hamiltonian

The 3-body problem

The Hamiltonian

The problem of 3-particles interacting via short range 2-body forces
was well studied.

Here we want to discuss the “photodisintegration” response of the
trimer at threshold.

We use a simple Hamiltonian[∑
i

~2

2m
∇2
i +

∑
i<j

V0U(µrij)

]
Ψ = EΨ

Which we write in dimensionless form[∑
i

1

2
∇2
i +

∑
i<j

gU(xij)

]
Ψ = εΨ

Where x = µr , g = V0m
~2µ2 , ε = Em

~2µ2 and U(x) is a Gaussian or a
Yukawa potential.
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The Hamiltonian

Solving the Schroedinger Equation

The HH expansion in 4 steps

1. Remove the center of mass and introduce hyperspherical coordinates

~r1, ~r2, . . . ~rA −→ ~Rc.m., ~η1~η2 . . . ~ηA−1 −→ ρ =
√
η21 + η22 + . . .+ η2A−1,Ω

2. Expand the wave function using hyperspherical harmonics

Ψ(ρ,Ω) =
∑

K≤Kmax

R[K](ρ)Y[K](Ω)

3. Calculate the matrix elements

V[K][K′](ρ) = 〈[K]|
∑

Vij |[K′]〉

4. Solve the eigenvalue problem[
−1

2

(
∂2

∂ρ2
+

3A− 4

ρ

∂

∂ρ
− K̂2

ρ2

)
+ V̂ (ρ)

]
Ψ = EΨ
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The Hamiltonian

The Ground state

Binding energy
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Photoabsorption

Photoabsorption

Real Photon

|q| = ω

σ (ω) = 4π2αωR (ω)

Where

Tλ(q) = (−)λ
√

2π
∑
J

√
2J + 1 [EJλ(q) + λMJλ(q)]

and

00

(E  ,     )

P

Pffω

(E  ,     )
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Photoabsorption

The Siegert theorem

Conserved current must fulfill

q · J(q) = ωρ(q)

Substituting this result we get

EJλ(q) = ESJλ(q) + EKJλ(q)

Where the Siegert term is given by

ESJλ(q) = − 1

4π

√
J + 1

J

ω

q

∫
dq̂ ρ(q)YJλ(q̂)

and the correction term (lower by q2) is
given by

EKJλ(q) = − 1

4π

√
2J + 1

J

∫
dq̂ Y λ

JJ+11(q̂)·J(q)

For low energy photons qR� 1 the
Siegert term is dominant.

00

(E  ,     )

P

Pffω

(E  ,     )
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Photoabsorption

A Model for “Photodisintegration”

We consider a system of nutral particles.

We assume that the each particle can absorb
a photon like quantity.

Utilizing the Siegert theorem the excitation
operator is proportional to the particle
density.

The long wavelength approximation is valid

For identical particles the dipole operator
vanishes.

the quadrupole opertor is the leading term

R(ω) =
∑
f

|〈f |Q̂|0〉|2δ(Ef − E0 − ω)

where
Q̂ = α

∑
i

r2i Y20(r̂i)

00
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Calculating the Response function

Calculating the Response
The Lorentz Integral transform (LIT) method

The response function

R(ω) =

∫
dψf |〈ψi | Ô | ψf 〉|2δ(Ef − Ei − ω)

Transformed with Lorentzian kernel

L(σ) =

∫
dω

R(ω)

(ω − σ)2 + Γ2

=

∫
dψf

|〈ψf | Ô | ψi〉|2

(Ef − Ei − σ)2 + Γ2

The transform can be written as

L(σ) =

∫
dψf 〈ψi | Ô | ψf 〉

1

Ef − Ei − σ − iΓ
1

Ef − Ei − σ + iΓ
〈ψf | Ô | ψi〉

Or

L(σ) =

∫
dψf 〈ψi | Ô

1

H − Ei − σ − iΓ
| ψf 〉〈ψf |

1

H − Ei − σ + iΓ
Ô | ψi〉
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Calculating the Response function

The Lorentz Integral transform (LIT) method
inclusive reaction

Using closure

L(σ) = 〈ψi | Ô
1

H − Ei − σ − iΓ
1

H − Ei − σ + iΓ
Ô | ψi〉 = 〈ψ̃ | ψ̃〉

| ψ̃〉 is the solution of the Schrödinger like equation

(H − E0 − σ + iΓ) | ψ̃〉 = Ô | ψ0〉.

Few comments

1 The LIT equation is just the Schrödinger equation with a source.

2 The only solution to the homogeneous equation is the trivial ψ̃ = 0
solution.

3 Since the source is localized ψ̃ −→ 0 as r −→∞.

4 The LIT equation can be solved using bound state methods !!!

5 R(ω) is obtained trough inversion of the transform, L(σ).

V. Efros, W. Leidemann, and G .Orlandini, PLB 238, 130 (1994).
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Few comments

1 The LIT equation is just the Schrödinger equation with a source.

2 The only solution to the homogeneous equation is the trivial ψ̃ = 0
solution.

3 Since the source is localized ψ̃ −→ 0 as r −→∞.

4 The LIT equation can be solved using bound state methods !!!

5 R(ω) is obtained trough inversion of the transform, L(σ).

V. Efros, W. Leidemann, and G .Orlandini, PLB 238, 130 (1994).
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Calculating the Response function

The Quadrupole response
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Sum Rules

Photodisintegration Sum Rules

Sn ≡
∫ ∞
ωth

dω ωnR(ω)

The sum rule Sn

Exists if R(ω) −→ 0 faster than ω−n−1.

Can be expressed as GS observable utilizing the closure of the
eigenstates of H.

S1 = 〈0| [O, [H,O]] |0〉 = 〈0|O (H − E0)O|0〉
S0 = 〈0|OO|0〉

S−1 = 〈0|O 1

H − E0
O|0〉
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Sum Rules

Naive Scaling

Using simple dimensional arguments we expect that

r ∼ 1/
√
E

The Quadrupole operator behaves as r2 so

R(ω) ∼ r4/E ∼ 1/E3

It follows that the sum rules should fulfill

Sn ∼ 1/E2−n

or
S0 ∼ 1/E2

S−1 ∼ 1/E3

S0/S−1 ∼ E
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Sum Rules

Calculated Sum Rules
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Sum Rules

Potential dependence
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Sum Rules

Naive scaling doesn’t work !!!

A For S0 we got a power of 1.33
instead of 2.

B For S−1 we got a power of 2.13
instead of 3.

C The results seems to be
independent of the short range
specifications of the potential.
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Sum Rules

Last comment - The Matter Radii
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 The Radii behaves as

rrms = CE−0.28

Utilizing this result we see that

S0 = A0E
−1.34 ∼ r4rms

S−1 = A−1E
−2.13 ∼ r7rms
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Conclusions

Summary and Conclusions

1 We have studied the Quadrupole response of a bosonic trinmer near
threshold.

2 We have seen that the response function diverge as E3 −→ 0.

3 The sum-rules S0, S−1 diverge as well.

4 We note that the divergence pattern of the sum-rules doesn’t follow the
simple dimensional analysis.

5 The exponents seems to be universal.

Thanks, It’s a great workshop !!!
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