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Introduction

Exotic atoms: Plateaux and rearrangement
History: Coulomb + short-range, Zel’dovich, Shapiro, etc.

−1/r + λV (r)

Where V (r) is very strong but with very short-range
Energy shift δE small but non perturbative,
Rearrangement if V (r) attractive, when λ→ coupling threshold
for binding,
Pattern explained by the Trueman–Deser formula

δE ∝ a|φ(o)|2

Holds beyond the case of a Coulomb interaction
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Exotic atoms in 3D

Coulomb + Square well
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Results 3D

Sum of two square wells
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Theory 3D

Pattern recovered with a point interaction
See Albeverio et al., Combescure et al.
But only one “nuclear” bound state in this model
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Theory 3D

Pattern recovered with a point interaction
See Albeverio et al., Combescure et al.
But only one “nuclear” bound state in this model
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Theory 3D
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Trueman-Deser

δE ∝ a|φ(o)|2

improves ordinary perturbation
works for small a,
indicates the trend for large a,
works again when a becomes small (but
positive)
many corrections

Coulomb-corrected scattering length
Effective range terms
P-wave analogs (Partensky + Ericson)
etc.
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Exotic atoms in 1D
Symmetric case
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Odd sector: analog to 3D
Even sector: evolves to the
odd one.
Trueman–Deser formula now

δE ∝ |φ(0)|2a

as λ = V2− V1↗, the
ground-state drops
immediately
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Exotic atoms in 1D
Asymmetric case
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as λ = V2− V1↗, the
ground-state drops
immediately
The spectrum evolves from
one square well
to two square wells
and then can get rearranged
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Exotic atoms in 2D
Comparison 1D–2D–3D

V = VLR + λVSR
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d = 2 last dimension for which a potential with
∫

V (r)dd~r , however
weak, binds
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Exotic atoms in 2D
Patterns in 2D

V = VLR + λVSR
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Left: Trueman–Deser, Exact, Simple perturbation
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Exotic atoms in 2D
Trueman–Deser in 2D

3D
δEn ∝ |φn(0)|2 a + · · ·

from, e.g., a Fermi effective contact interaction. n dependence.
a defined as zero of the E = 0 asymptotic wave function

k cot δ(k) = −1
a
+

1
2

r2
0 k2 + · · ·

1D

δE ∝ |φ(0)|
2

a
+ · · ·

2D

φ(r) =
1√
2π

u(r)√
r
, −u′′(r) + V (r)u(r) = E u(r) ,

uas =
√

r ln r/a , at E = 0
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Exotic atoms in 2D
Trueman–Deser in 2D

2D
φ(r) =

1√
2π

u(r)√
r
, −u′′(r) + V (r)u(r) = E u(r) ,

uas =
√

r ln r/a , at E = 0

cot δ(k) =
2
π
[ln(a k/2) + γ] +

1
2

r0 k2 + · · ·

where r0 is given by an integral similar the the 3D formula.
For weak binding, this gives

E ∝ a−2 ∝ exp(−A/g2) ,

as discussed in other contributions.
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Exotic atoms in 2D
Derivation of the Trueman formula

External potential alone

−u′′ − u
4 r2 + V1 u − E u = 0 , E = −k2 , (1)

u = h(E , r) ∝
√

r K0(k r) at r →∞, normalized
∫ +∞

0 h(E , r)2 dr = 1
At small r , if E0 = unperturbed energy and E = modified energy

h(E , r) = B(E)
√

r ln r + A(E)
√

r + · · · ,
h(E0, r) = A0

√
r + · · · A0 = A(E0) > 0 , B(E0) = 0 .

Combining (1) for E and E0 gives

A0 B(E) = (E − E0)︸ ︷︷ ︸
δE

∫ +∞

0
h(E , r)h(E0, r) dr = δE

[
1 +O(δE)2]
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Exotic atoms in 2D
Derivation of the Trueman formula

δE = A0 B(E)

Now, if A(E) = A0 + Ã0 δE + · · · ,
and if h(E , r) = B(E)

√
r ln r + A(E)

√
r + · · · is compared to

h(E , r) with
√

r [ln r − ln a] as provided by the asymptotic in a
short-range interaction, one gets

B
1

=
A0 + Ã0 δE
− ln a

,

which when combined with B ' δE/A0 gives

δE ' − A2
0

ln a + A0 Ã0
.

JMR Exotic



Introduction Exotic atoms in 3D Some 1D results Results in 2D Summary

Example
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Exponential well supplemented by another exponential of shorter
range. Thick line: exact, dashed line: SL formula, thin line:
perturbation theory. We use here
V = −g1 exp(−r/r1)− λ exp(−r/r2) with r1 = 2, g1 = 1 and
r2 = 0.02.
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Summary

V (r) = Vext + Vint

δE =


A2

0/a (d = 1)
A2

0/ ln(a/R) (d = 2)
A2

0 a (d = 3)

where in Vext the reduced wave function is u(r) = A0{1,
√

r , r , . . .}
i.e., A0 ∝ φ(0)
a scattering length in Vint

factorisation int–ext for d = 1 and d = 3,
d = 2 no factorisation, but R given by the external potential
link to the Fermi potential and thus to the statistical mechanics of
boson systems to be clarified.
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