Universal and non universal Efimov physics in ultracold gases

11-10-11, EMFCSC, Erice

Servaas Kokkelmans

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

Outline

Introduction - The Efimov effect

- Universality in few-body physics
- Tune the two-body interaction

Non-universal effects?

- Role of the three-body parameter
- Direct association of Efimov trimers

Observability of Efimov physics in a lattice

Three-body bound states

Efimov Physics vs interaction strength

Efimov effect:

 accumulation of trimer bound states near zero energy and diverging scattering length

spacing bound states: $E_{n+1}/E_n = e^{-2\pi/s_0}$

Overview: [F. Ferlaino and R. Grimm, Physics 3, 9 (2010); C. Greene, Physics Today, march 2010]

Control over interactions

Feshbach resonances:

- Control over interaction
- Tunable bound state: create cold dimers and trimers

Dispersive shape scattering length

Prediction of Fesbach resonances

- Coupled-channels scattering Model
 - Numerical calculation with potentials and spin structure
 - States coupled via Hyperfine and Zeeman interactions

$$H_{hf} = \frac{a_{hf}}{\hbar^2} \vec{s} \cdot \vec{i} \qquad H_Z = \gamma_e \vec{s} \cdot \vec{B} + \gamma_i \vec{i} \cdot \vec{B}$$

Total electron/nuclear spin: $\vec{S} = \vec{s_1} + \vec{s_2}$; $\vec{I} = \vec{i_1} + \vec{i_2}$

- Find resonances in scattering length
- Simple model: based on highest bound state

Asymptotic bound-state model

Complicated coupled radial equations ⇒ simple matrix diagonalization gives rise to coupled field-dependent dimer states Developed in collaboration with Tobias Tiecke and Jook Walraven, UvA First applied to Innsbruck data (Grimm) a→±∞:Transition from bound to unbound Feshbach resonances!

See e.g.: [T. G. Tiecke et al, Phys. Rev. Lett. 104, 053202 (2010)]

Change the ABM parameters

Few body physics: universal when interactions insensitive to microscopic details interactionDepend only on one (or few) universal parameters

- Scattering length
- Three body parameter K
- Width of resonance

Inversely proportional to width ΔB

Three-body physics in ⁷Li

Experiment performed in group Lev Khaykovic (Bar Ilan Univ.)

⁷Li three-body recombination loss in the vicinity of a Feshbach resonance.

• Feshbach resonances for $|f=1, m_f=0\rangle$ state (coupled channels calculation)

Scattering length and Effective Range 400-

Universality depends strongly on width of resonance.

Captured by Effective Range *R*^{*e*ff}

3-body recombination: more features

Universality mostly at one side of resonance, not across

Check of a(B)

Address problem carefully:

Underlying assumption: precise knowledge a(B)

Coupled channels calculations:

- Best available singlet-triplet potentials
- Improved via accumulated phase method using available ⁶Li/⁷Li data

Characterize the resonances

- But how to account for experimental uncertainties of particular experiment?
 - Match potentials/parameters to local data, to be consistent with magnetic field scaling

- 3-body recombination in both ⁷Li spin states
 - **Coupled channels calculations**

Measurement of dimer binding energies

- Needed for direct link between scattering length and field-dependent 3-body recombination spectrum
 - RF association of dimers
 - Determine resonance position B_{0} , binding energy E_{B}

Analyze binding energies

- Same coupled channels model for two different spin states $|f=1, m_f=0\rangle$ and $|f=1, m_f=1\rangle$
 - Excellent fit of data
 - Yields very accurate mapping of *a(B)* curves!

state	type	B_0 (G)	
		Combined fit	Experimental
$ m_F = 0\rangle$	narrow	845.54	844.9(8)
$ m_F=0\rangle$	wide	893.95(5)	893.7(4)
$ m_F=1\rangle$	wide	737.88(2)	738.2(4)

Better ⁷Li potentials: a_s =34.33(2) a_n, a_r =-26.87(8) a_n

[N. Gross , Z. Shotan , O. Machtey , S. Kokkelmans and L. Khaykovich, Comp.Rend.Phys (2011)]

Recomination rate for two spin states

Ref.: [N. Gross, Z. Shotan, S. Kokkelmans, L. Khaykovich, PRL 105, 103203 (2010)]

Three-body parameter

- Cs: Multiple FB resonances
 - Same three-body parameter
 - Measurements only for a<0

[Berninger at al. arXiv/1106.3933]

Combine several experiments

[P. Naidon, E. Hiyama and M. Ueda, arXiv/1109.5807]

Is there a universal scaling of κ with range potential?

Few body physics with fermions

• Efimov effect for fermions: three different spin states

a23

[A.N. Wenz et al, PRA **80**, 040702 2009] [J. R. Williams et al, PRL **103**, 130404 (2009)] [Nakajima et al, PRL **105**, 023201 (2010)]

Measurement binding energy Efimov states: RF association

[T. Lompe et al, Science 330, 940 (2010).]

[S. Nakajima et al, Phys. Rev. Lett. **106**, 143201 (2011)]

RF association of trimers with bosons

• Performed at Bar-Ilan with ⁷Li

[O. Machtey, Z. Shotan, N. Gross, L. Khaykovich, to be submitted]

How universal is the two-body physics?

- **Deviations from** $E_d = -\hbar^2 / m a^2$
- Even deviations from Effective range

How universal is the three-body physics?

Deviations from universality

Non-universal trimer energy

$$|f=1, m_f=0\rangle$$
 spin state

Avalanche resonance

Another signature of non-universal behavior

 $|f=1, m_f=1\rangle$

spin state

At consistent value scattering length

Trimers in a harmonic potential

- Is it possible to stabilize the trimers?
 - Efimov trimer already instable by itself
 - Deep optical lattice: will it help?
- Three particles in harmonic potential with a Feshbach resonance:

$$H = -\frac{1}{2} \sum_{i} \Delta_{i} + \frac{1}{2 a_{ho}^{4}} \sum_{i} r_{i}^{2} + \sum_{i} V_{i}$$

 a_{ho} : harmonic oscillator length r_i : position particle i V_i : int. between particles j and k

Two particles in a h.o. potential

Feshbach resonance modeled by scattering length a

Resonance couples two consecutive HO levels

[T. Busch et al., Found. Phys. 28, 549 (1998).]

Three particles: hyperspherical approach

• Adiabatic expansion $\psi(R,\alpha) = \frac{1}{2\pi R^{5/2} \sin(2\alpha)} \sum_{n} f_n(R) \phi_n(R,\alpha)$

Hyperradius R > 0: $R^2 = r_{i,jk}^2 + r_{jk}^2$ Hyperangle $\alpha_i \in [0, \pi/2]$. $r_{i,jk} = R \cos \alpha_i$, $r_{jk} = R \sin \alpha_i$, (i,j,k) cyclic permutation (1,2,3).

- Faddeev eqn: [Fedorov and Jensen, PRL 71, 4103 (1993)]
 - Hyperangular problem: $F^{(R)}\phi_n(R,\alpha) = \lambda_n(R;V)\phi_n(R,\alpha)$
 - Find eigenvalues $\lambda_n(R; V)$ from:

$$\cos\left(\lambda_n^{1/2}\frac{\pi}{2}\right) - \frac{8}{\sqrt{3}}\lambda_n^{-1/2}\sin\left(\lambda_n^{1/2}\frac{\pi}{6}\right) = -\sqrt{2}\lambda_n^{-1/2}\sin\left(\lambda_n^{1/2}\frac{\pi}{2}\right)Rk_R\cot\left(\delta\left(k_R\right)\right)$$

Hyperspherical approach (2)

Solve hyperradial problem:

$$\left[-\frac{\partial^{2}}{\partial R^{2}} + \frac{\lambda_{n}(R/a) - 1/4}{R^{2}} + \frac{R^{2}}{a_{ho}^{4}}\right] f_{n}(R) = 2Ef_{n}(R)$$

Write solution as:

T = κ exp[φ(T R₀; ξ, θ)]exp
$$\left(\frac{n\pi}{s_0}\right)$$

Define total energy as

$$T^2 = K^2 + \frac{1}{a^2} + \frac{1}{a_{ho}^2}$$

T = distance to origin,
: shape of surfaces ,
κ: crossing surface with K – axis
Φ : characteristic range potential *n* : various surfaces

Solutions

Represent solutions in 3D parameter space

[Jim Portegies and Servaas Kokkelmans, Few Body Sys. (2011)]

Trimer solutions for fixed oscillator strength

Decay of trimer state

- Introduce in-elasticity parameter η for short range (complex three-body parameter)
- Find complex eigenvalues $E = E_T i \Gamma_T/2$

Mixed harm. oscillator - Efimov properties

• Allow for regime with small losses!

Summary

- Universal Efimov physics observed in ⁷Li 3-body recombination exp.
 - Demonstrated in two different hyperfine states
 - Spend great effort at mapping out *a(B)* around resonance

- Observations of non-universal corrections trimer energy
 - Needs better understanding

- Trimers in optical lattices
 - Study trimers with mixed Efimov – h.o. properties

Acknowledgments

Efimov physics in ⁷Li

Noam Gross, Zav Shotan, Olga Machtey, Lev Khaykovich

Feshbach res. Marije Haverhals-Maikel Goosen

Dipolar BEC Elmer doggen Rick van Bijnen -

Nederlandse Organisatie voor Wetenschappelijk Onderzoek Rydberg lattices Rick van Bijnen Sjoerd Smit

Trimers in optical lattices Jim Portegies (now Courrant inst, NY)