On the breakup of $^{12}\mathrm{C}$ resonances into three α particles

Oliver S. Kirsebom

Erice, October 2011

Department of Physics and Astronomy, Aarhus University, Denmark & TRIUMF, Vancouver, BC, Canada

Graphical illustration

α clustering in nuclei

(historical introduction)

At that time* one was tempted to consider alpha particles as basic building blocks of nuclei. However, from those days a warning from Schrödinger still persists in my mind. During the late twenties he chided the participants in a Berlin seminar for their lack of imagination. In his impulsive manner he said: **"Just because you see alpha particles coming out of the nucleus, you should not necessarily conclude that inside they exist as such."**

(J. Hans D. Jensen, Nobel lecture 1963)

J. Hans D. Jensen

E. Schrödinger

* Late 1920s

Bethe and Bacher (1936) Wefelmeier (1937) Wheeler (1937) von Weizsäcker (1938)

Constant per-bond energy?

Example: ¹²C

7.28 MeV / 3 bonds = 2.4 MeV per bond

Valence nucleon/hole

Hafstad and Teller (1938)

The alpha cluster model is extended to cases where one additional nucleon is present or missing from the complete $N\alpha$ structure

 ${}^{9}\mathsf{Be} = n + \alpha + \alpha$

E. Teller

binding $\approx 1.6~\text{MeV}$

New understanding

"The alpha particle loses its identity in the compact nucleus" Ikeda, Takigawa, Horiuchi (1968)

α clustering in ¹²C

1953

Table: Claims of observation of the 2^+ rotational excitation of the Hoyle state

Ref.	Exp. method	E (MeV)	Γ (MeV)
John <i>et al.</i> (2003)	${}^{12}C(\alpha, \alpha')$ ${}^{12}C(\alpha, \alpha')$ ${}^{12}C({}^{12}C, 3\alpha){}^{12}C$ ${}^{12}C(p, p')$	11.46	0.43
Itoh <i>et al.</i> (2004)		9.9	1.0
Freer <i>et al.</i> (2007)		11.16	
Freer <i>et al.</i> (2009)		9.6	0.6
Hyldegaard <i>et al.</i> (2010)	$^{12}B(,\beta^{-})^{12}C(,3\alpha)$ $^{12}N(,\beta^{+})^{12}C(,3\alpha)$	~ 11	
Freer <i>et al.</i> (2011)	${}^{12}C(\alpha,3\alpha)\alpha \text{ and } {}^{9}Be(\alpha,3\alpha)n$ ${}^{12}C(\gamma,3\alpha)$ ${}^{12}C(\rho,\rho')$	9.4*	
Gai (2011)		9.63	1.91
Zimmerman <i>et al.</i> (2011)		9.6	0.5

 * Inferred from the observation of a possible 4 $^+$ state at 13.3 MeV.

Claims of observation

• large spatial extension

• large decay width (lpha preformation factor \sim 1)

• momentum distribution of decay products? *

*only for N-body decays with $N \ge 3$

It is remarkable that very little information about nuclear structure could be gained from the study of alpha decay. Max von Laue has pointed this out very clearly in a letter to Gamow in 1926; he congratulated Gamow on his explanation of the Geiger-Nuttal law in terms of the tunneling effect and then went on: **"however, if the alpha decay is dominated by quantum phenomena in the region outside the nucleus, we obviously cannot learn much about nuclear structure from it."**

(J. Hans D. Jensen, Nobel lecture 1963)

J. Hans D. Jensen

G. Gamow

M. von Laue

Theoretical models

sequential

• democratic (direct)

• three-body

Physical ingredients:

- *R*-matrix parametrization of α - α resonance (⁸Be₂₊)
- angular correlations due to spin-parity conservation
- symmetrization of decay amplitude

$$f = \sum_{m_b} (\ell \ m_a - m_b \ j_b m_b | j_a m_a) Y_{\ell}^{m_a - m_b}(\Theta_1, \Phi_1) Y_{\ell'}^{m_b}(\theta_2, \phi_2) \\ \times \frac{\sqrt{\Gamma_1 \Gamma_2 / \sqrt{E_1 E_{23}}} e^{i(\omega_{\ell} - \phi_{\ell})} e^{i(\omega_{\ell'} - \phi_{\ell'})}}{E_0 - \gamma_2^2 [S_{\ell'}(E_{23}) - S_{\ell'}(E_0)] - E_{23} - i\frac{1}{2}\Gamma_2}$$

D. P. Balamuth *et al.*, Phys. Rev. C **10** (1974) 975
H. O. U. Fynbo *et al.*, Phys. Rev. Lett. **91** (2003) 082502

Democratic

- five variables $\{E_1, \Omega_x, \Omega_y\}$
- expand decay amplitude in hyperspherical harmonics

$$f^{JM} = \sum_{n} B_n \Phi_n^{JM}(E_1, \Omega_x, \Omega_y)$$

- hypermomentum $K = \ell_x + \ell_y + 2n$
- three-body centrifugal barrier

$$V_{c.b.} \sim (K + \frac{3}{2})(K + \frac{5}{2})/\rho^2$$

- only retain lowest-order term allowed by symmetries
- expected to work best for low excitation energies

Three-body

- hyperspherical variables $\{\rho, \alpha, \Omega_x, \Omega_y\}$
- expand wave function in hyperspherical harmonics

$$\Psi^{JM} = \rho^{-5/2} \sum_{n} f_n(\rho) \Phi_n^{JM}(\rho, \Omega)$$

- solve Faddeev equations in coordinate space
- phenomenological Ali-Bodmer α - α potential
- three-body short-range potential
- complex scaling method used to compute resonances

R. Álvarez-Rodríguez *et al.*, Eur. Phys. J. A **31** (2007) 303 and references therein

 $\Omega = \{\alpha, \Omega_x, \Omega_y\}$

 $x = \rho \sin \alpha$ $y = \rho \cos \alpha$

Experiment

Experimental method and setup

3
He + 10 B \rightarrow p + 3 α at 4.9 MeV
 3 He + 11 B \rightarrow d + 3 α at 8.5 MeV

M. Alcorta et al., Nucl. Instr. Meth. A 605 (2009) 318

Excitation spectrum in ${}^{3}\text{He} + {}^{11}\text{B} \rightarrow d + {}^{12}\text{C}^{*}$

Dalitz-plot analysis technique

Experimental Dalitz plots for three selected states

What is the origin of the observed structures?

"Forbidden regions" owing to spin-parity conservation and Bose symmetry

C. Zemach, Phys. Rev. 133 (1964) B1201

Bands of increased intensity owing to the ${}^8\text{Be}_{2^+}$ resonance

Qualitative analysis

Comparison to models

Quantitave analysis 11.83 MeV, 2⁻¹

 $11.83~{\rm MeV},\,2^-$

Quantitave analysis 11.83 MeV, 2⁻

Broad states

Example of Dalitz plot

Possible background from

- 1. ³He + ¹¹B \rightarrow ⁸Be + ⁶Li^{*} \rightarrow d + α + α + α
- 2. ³He + ¹¹B $\rightarrow \alpha$ + ¹⁰B* $\rightarrow d + \alpha + \alpha + \alpha$

Four-body problem?

 distance separating d and ¹²C* at time of 3α breakup:

$$x = v\tau = v\hbar/\Gamma$$

Coulomb energy:

$$E_C = \frac{1.4 \, Z_1 Z_2}{x} \, \, \text{fm MeV}$$

• $\Gamma = 0.6\text{--}1$ MeV \Rightarrow $E_C \sim 10\%$ of the decay energy

• $\Gamma = 1$ -2 MeV $\Rightarrow \lambda = h/p \sim x$

Summary

Question

Is the α momentum distribution sensitive to short-range structure?

Methods

- Complete kinematics measurement
- Dalitz-plot analysis (symmetries and final-state interactions)

Results

Full three-body calculation reproduces the gross structures of the Dalitz distribution, but fails to reproduce the detailed shape *(effect of short-range structure?)*

• Future

Apply similar analysis to very broad states

O. S. Kirsebom et al., Phys. Rev. C 81 (2010) 064313

New experiment

(more Dalitz plots)

Reaction: $p + {}^{11}B \rightarrow {}^{12}C^* \rightarrow 3\alpha$

Dalitz plots

 $16.11, 2^+$

Collaboration

O. S. Kirsebom¹, M. Alcorta², M. J. G. Borge², M. Cubero², C. Aa. Diget³, R. Dominguez-Reyes², L. M. Fraile⁴, B. R. Fulton³, H. O. U. Fynbo¹, D. Galaviz², S. Hyldegaard¹, K. L. Jensen¹, B. Jonson⁵, M. Madurga², A. Muñoz Martin⁶, T. Nilsson⁵, G. Nyman⁵, A. Perea², K. Riisager¹, O. Tengblad² and M. Turrion²

¹ Department of Physics and Astronomy, Aarhus University, Denmark
 ² Instituto de Estructura de la Materia, CSIC, Madrid, Spain
 ³ Department of Physics, University of York, UK
 ⁴ PH Department, CERN, Geneva, Switzerland
 ⁵ Fundamental Physics, Chalmers University of Technology, Goteborg, Sweden
 ⁶ CMAM, Universidad Autonoma de Madrid, Spain

Selective searches for the 2⁺ state (β and γ decay)

eta and γ decay in the A=12 system

β and γ decay in the A = 12 system

