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1. BCS-BEC crossover and the unitarity limit (I)

In 2002 the BCS-BEC crossover has been observed1 with ultracold gases
made of fermionic alkali-metal atoms.

This crossover is obtained by changing (with a Feshbach resonance) the
s-wave scattering length aF of the inter-atomic potential:
– aF → 0− (BCS regime of weakly-interacting Cooper pairs)
– aF → ±∞ (unitarity limit of strongly-interacting Cooper pairs)
– aF → 0+ (BEC regime of bosonic dimers)

1K.M. O’Hara et al., Science 298, 2179 (2002).



1. BCS-BEC crossover and the unitarity limit (II)

The many-body Hamiltonian of a two-spin-component Fermi system is
given by

Ĥ =
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2m
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j
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V (ri − rj) , (1)

where U(r) is the external confining potential and V (r) is the
inter-atomic potential. Here we consider N↑ = N↓.
The inter-atomic potential of a dilute gas can be modelled by a square
well potential:

V (r) =

{

−V0 r < r0
0 r > r0

(2)

By varying the depth V0 of the potential one changes the s-wave
scattering length

aF = r0

(
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√

mV0/~)

r0
√

mV0/~

)

. (3)



1. BCS-BEC crossover and the unitarity limit (III)

The crossover from a BCS superfluid (aF < 0) to a BEC of molecular
pairs (aF > 0) has been investigated experimentally2, and it has been
shown that the unitary Fermi gas (|aF | = ∞) exists and is (meta)stable.
In few words, the unitarity regime of a dilute Fermi gas is characterized by

r0 ≪ n−1/3 ≪ |aF | . (4)

Under these conditions the Fermi gas is called unitary Fermi gas. Ideally,
the unitarity limit corresponds to

r0 = 0 and aF = ±∞ . (5)

The detection of quantized vortices under rotation3 has clarified that the
unitary Fermi gas is superfluid.

2K.M. O’Hara et al., Science 298, 2179 (2002).
3M.W. Zwierlein et al., Science 311, 492 (2006); M.W. Zwierlein et al., Nature

442, 54 (2006)



1. BCS-BEC crossover and the unitarity limit (IV)

The only length characterizing the uniform unitary Fermi gas is the
average distance between particles d = n−1/3.
In this case, from simple dimensional arguments, the ground-state energy
per volume must be

E0
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= ξ
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~
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(3π2)2/3n5/3 = ξ

3

5
ǫF n , (6)

with ǫF Fermi energy of the ideal gas, n = N/V the total density, and ξ
a universal unknown parameter.
Monte Carlo calculations and experimental data with dilute and ultracold
atoms suggest4 that the unitary Fermi gas is a superfluid with ξ ≃ 0.4.

4S. Giorgini, L.P. Pitaevskii, and S. Stringari, RMP 80, 1215 (2008).



2. Thomas-Fermi density functional

The Thomas-Fermi (TF) energy functional5 of the unitary Fermi gas in
an external potential U(r) is

ETF =

∫

d3
r

[

ξ
3

5

~
2

2m
(3π2)2/3n5/3(r) + U(r)n(r)

]

, (7)

with n(r) = n↑(r) + n↓(r) total local density. The total number of
fermions is

N =

∫

d3
r n(r) . (8)

By minimizing ETF one finds

ξ
~

2

2m
(3π2)2/3n2/3(r) + U(r) = µ̄ , (9)

with µ̄ chemical potential of the non uniform system.

5S. Giorgini, L.P. Pitaevskii, and S. Stringari, RMP 80, 1215 (2008).



3. Extended Thomas-Fermi density functional (I)

The TF functional must be extended to cure the pathological TF
behavior at the surface.
We add to the energy per particle the term

λ
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8m
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~
2
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(∇√
n)2

n
. (10)

Historically, this term was introduced by von Weizsäcker6 to treat surface
effects in nuclei. Here we consider λ as a phenomenological parameter
accounting for the increase of kinetic energy due the spatial variation of
the density.
Other recent density-functional methods for unitary Fermi gas:
– the Kohn-Sham density functional approach of Papenbrock,
PRA 72, 041603 (2005);
– the superfluid local-density approximation of Bulgac,
PRA 76, 040502(R) (2007).

6C.F. von Weizsäcker, ZP 96, 431 (1935).



3. Extended Thomas-Fermi density functional (II)

The new energy functional, that is the extended Thomas-Fermi (ETF)
functional of the unitary Fermi gas, reads

E =
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r
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(11)
By minimizing the ETF energy functional one gets:
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√
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This is a sort of stationary 3D nonlinear Schrödinger (3D NLS) equation.
In a recent paper [S.K. Adhikari and L.S., PRA 78, 043616 (2008)] we
have used this simple (but reasonable) choice:

ξ = 0.44 and λ = 1/4 (13)

which fits quite well Monte Carlo data.



3. Extended Thomas-Fermi density functional (III)

Having determined the parameters ξ and λ we can now use our
single-orbital density functional to calculate various properties of the
trapped unitary Fermi gas.
We calculate numerically (by solving with a finite-difference
Crank-Nicolson method the stationary 3D NLSE) the density profile n(r)
of the gas in a isotropic harmonic trap

U(r) =
1

2
mω2(x2 + y2 + z2) . (14)

We compare our results with those obtained by Doerte Blume7 with her
FNDMC code. For completeness we consider also the density profiles
obtained by Aurel Bulgac8 using his multi-orbital density functional
(SLDA).

7D. Blume, J. von Stecher, C.H. Greene, PRL 99, 233201 (2007); J. von Stecher,
C.H. Greene and D. Blume, PRA 77 043619 (2008); D. Blume, unpublished.

8A. Bulgac, PRA 76, 040502(R) (2007).



3. Extended Thomas-Fermi density functional (IV)
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3. Extended Thomas-Fermi density functional (V)
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4. Generalized superfluid hydrodynamics (I)

Let us now analyze the effect of the gradient term on the dynamics of
the superfluid unitary Fermi gas.
At zero temperature the low-energy collective dynamics of this fermionic
gas can be described by the equations of extended9 irrotational and
inviscid hydrodynamics:

∂n

∂t
+ ∇ · (nv) = 0 , (15)

m
∂

∂t
v + ∇

[

− λ
~

2

2m

∇2
√

n√
n

+ ξ
~

2

2m
(3π2n)2/3 + U(r) +

m

2
v2
]

= 0 . (16)

They are the simplest extension of the equations of superfluid
hydrodynamics of fermions10, where λ = 0.

9Quantum hydrodynamics of electrons: N. H. March and M. P. Tosi, Proc. R. Soc.
A 330, 373 (1972); E. Zaremba and H.C. Tso, PRB 49, 8147 (1994).

10S. Giorgini, L.P. Pitaevskii, and S. Stringari, RMP 80, 1215 (2008).



4. Generalized superfluid hydrodynamics (II)

From the equations of superfluid hydrodynamics one finds the dispersion
relation of low-energy collective modes of the uniform (U(r) = 0) unitary
Fermi gas in the form

Ωcol = c1 q , (17)

where Ωcol is the collective frequency, q is the wave number and

c1 =

√

ξ

3
vF (18)

is the first sound velocity, with vF =
√

2ǫF

m
is the Fermi velocity of a

noninteracting Fermi gas.
The equations of extended superfluid hydrodynamics (or the superfluid
NLSE) give [L.S. and F. Toigo, PRA 78, 053626 (2008)] also a correcting
term, i.e.

Ωcol = c1 q

√

1 +
3λ

ξ

( ~q

2mvF

)2
, (19)

which depends on the ratio λ/ξ.



4. Generalized superfluid hydrodynamics (III)

In the case of harmonic confinement

U(r) =
1

2
mω2r2 (20)

we study numerically the collective modes of the unitary Fermi gas by
increasing the number N of atoms.
By solving the superfluid NLSE we find that the frequency Ω0 of the
monopole mode (l = 0) and the frequency Ω1 dipole mode (l = 1) do
not depend on N :

Ω0 = 2ω and Ω1 = ω , (21)

as predicted by Y. Castin [CRP 5, 407 (2004)].
We find instead that the frequency Ω2 of the quadrupole (l = 2) mode
depends on N and on the choice of the gradient coefficient λ.



4. Generalized superfluid hydrodynamics (IV)
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[L.S., F. Ancilotto and F. Toigo, LPL 7, 78 (2010).]



5. Shock waves (I)

One of the basic problems in physics is how density perturbations
propagate through a material.
In addition to the well-known sound waves, there are shock waves
characterized by an abrupt change in the density of the medium: they
produce, after a transient time, an extremely large density gradient (the
shock).
Shock waves are ubiquitous and have been studied in many different
physical systems11

Here we investigate the formation and dynamics of shock waves in the
unitary Fermi gas by using the zero-temperature equations of generalized
superfluid hydrodynamics.

11L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon Press, London,
1987); G.G. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974).



5. Shock waves (II)
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Time evolution of supersonic shock waves. Initial condition with
σ/lF = 18 and η = 0.3. The curves give the relative density profile ρ(z)
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~2/(mǫF ) is the Fermi length and
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5. Shock waves (III)
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Time evolution of subsonic shock waves. Initial condition with σ/lF = 18
and η = −0.2. The curves give the relative density profile ρ(z) at
subsequent frames, where lF =

√

~2/(mǫF ) is the Fermi length and
ωF = ǫF/~ is the Fermi frequency.



5. Shock waves (IV)
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Conclusions

Our ETF functional of the unitary Fermi gas can be used to study
ground-state density profiles in a generic external potential U(r).

Our generalized superfluid hydrodynamics can be applied to
investigate collective modes of the unitary Fermi gas in a generic
external potential U(r).

Also shock waves can be studied with our generalized superfluid
hydrodynamics if T ≪ Tc , with Tc the critical temperature of the
superfluid-normal phase transition (Tc ≃ 0.2 TF , and TF ≃ 10−7

Kelvin for dilute alkali-metal atoms).


