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Motivation: Four-body problem

Main Goal
The Four-body Problem - Scaling and Universality

Motivation
Short-range interactions & large quantum systems: dominance
of the classically forbidden region;
Universality & model independence;
Zero-range interaction: modeling the tail of the wave function &
few parameter description - How Many?
Correlation between few-body observables & Limit-cycles;
Interwoven 4-body and 3-body Limit-cycles;
Reality: Cold atom physics close to a Feshbach resonance!
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Weakly-bound FB systems, Efimov effect & Thomas collapse

Why are weakly bound state problems interesting?

Identify and understand universal properties of large few-body
quantum systems expressed as correlations between
observables, the common physics of the classically forbidden
region of short-ranged interactions;
Model independence, i.e., the details of the interactions between
particles are not relevant apart few scales or parameters, such
that one can consider a zero-range interaction [In a three-body
(3B) system, once one 3B observable is given, in addition to a
two-body parameter (scatt. length), the other observables are
found correlated with the first one.]
”One goal is to be able to engineer the interaction between atoms
to achieve a quantum system in which multiple-body interactions
dominate the physical behavior” [G. Modugno, Science 326
(2009) 1640]. How to tune few-body parameters or scales?
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Weakly-bound FB systems, Efimov effect & Thomas collapse

Illustration: 3-boson wave function & contact interaction

Three-boson wave function:  

WeaklyWeakly boundbound system system wavewave functionfunction & & contactcontact interactioninteraction

q1

R1

(1)

(2) (3)

+   (1�2)  +  (1�3)

• Skorniakov and Ter-Martirosian equations (1956)

• Danilov, Sov. Phys. JETP 13 (1961) 349

• scatt. length + 3B short-range parameter

• Thomas collapse & Efimov effect

2
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Weakly-bound FB systems, Efimov effect & Thomas collapse

Three-body Efimov effect

Efimov effect: If two bosons interact in such a way that a
two-body bound state is exactly on the verge of being formed,
then in a three-boson system one should observe an infinite
number of bound states. This phenomenon appears in a
three-dimensional formalism for the three-body systems, and
does not exist in one or two dimensions.
This effect, predicted by Vitaly Efimov in 1970 [Phys. Lett. B 33
(1970) 563; Sov. J. Nucl. Phys. 12 (1971) 589], have been
recently verified in ultracold atom laboratories, with the
increasing number of three-body bound-state levels, as the
two-body scattering length goes to infinity.
The observation of this effect, first reported by Kraemer et al.
[Nature 440 (2006) 315], was confirmed by several other atomic
experimental groups, which are looking for the properties of such
states [Zaccanti et al., Nature Phys. 5 (2009) 586; Ferlaino et al,
PRL 102 (2009) 140401; Pollack et al., Science 326 (2009) 1683;
etc.]
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Weakly-bound FB systems, Efimov effect & Thomas collapse

Why are weakly bound state problems interesting?

Efimov Physics (1970): Nuclear Physics

Vitaly Efimov

an infinite sequence of weakly bound 3-body states as
a→ ±∞
Unitary limit (a→ ±∞): En+1

3 /En
3 ≈ 1/22.72

=⇒ discrete scaling with scaling factor 22.7
For finite a: discrete scaling is exact when range→ 0
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Weakly-bound FB systems, Efimov effect & Thomas collapse

Thomas collapse

Efimov effect is the counterpart of the Thomas collapse [Phys. Rev.
47 (1935) 903] of the three-body ground-state energy, when the
range of the two-body interaction r0 goes to zero. Both effects can be
described by the same dimensionless non-relativistic three-body
equation [Adhikari et al. Phys. Rev. A 37 (1988) 3666.]
The Thomas collapse was crucial in determining the range of the
nuclear forces, as pointed out by Bethe and Bacher [Rev. Mod. Phys.
8 (1936) 82].

|a|
r0
−→∞

r0 → 0 (Thomas collapse), |a| → ∞ (Efimov effect)
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Scaling plots - 3B

Scaling plots

The trimer energies can be presented in a scaling plot where a
limit-cycle can be easily identified in terms of the relevant
physical scales (scatt. length and one three-boson energy) -
renormalization (More in Marcelo Yamashita Talk);
Scheme proposed in 1999 [Frederico et al., Phys. Rev. A 60, R9
(1999) “Scaling limit of weakly bound triatomic states”], which
was appropriate for revealing the three-body scaling, with the
corresponding Efimov cycles.
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Extension to 4-boson system shows the effect of a new scale!
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Four-boson systems and Efimov effect

The addition of one more particle to the quantum three-body system
has long challenged the Efimov picture:

R. D. Amado and F. C. Greenwood, There is no Efimov effect for four
or more particles, Phys. Rev. D 7, 2517 (1973).

H. Kröger and R. Perne, Efimov effect in the four-body case, Phys.
Rev. C 22, 21 (1980).

S. K. Adhikari and A. C. Fonseca, Four-body Efimov effect in a
Born-Oppenheimer model, Phys. Rev. D 24, 416 (1981).

H. W. L. Naus and J. A. Tjon, The Efimov effect in a four-body
system, Few-Body Systems 2, 121 (1987).
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Four-boson systems and Efimov effect

Correlation in four-nucleon systems: Tjon line

Notes:

Nonexistence of a proper four-body scale relies on a strong
suppression of the short-range physics, beyond that already
accounted for in the three-boson system.
Amado and Greenwood showed that there is no infrared
divergence (estimating the trace of the four-body kernel in
momentum space) which led them to conclude against the
existence of Efimov effect in the case of four or more particles.
However, the momentum integrals should also implicitly have an
ultraviolet cutoff (the four-body one) to regulate them.
Conclusions drawn within the nuclear physics context are
obviously limited, in view of the dominance of the two-body
potential and repulsion at short-range: the four-body scale is
suppressed!

Dominance of 2-body forces in the nuclear physics context leads to
the Tjon-line [Phys. Lett. B 56, 217 (1975)]: 4He and the triton
binding energies are strongly correlated with a fixed slope.



Scalings in Few-Body Systems Formalism Model results - The tetramer spectrum Conclusion Further Details

Four-boson systems and Efimov effect

Correlation in Four-nucleon systems: Tjon line

Tjon was not convinced on the non-existence of a proper
four-body scale, in a more general case, as shown by his work
with Naus [Few-Body Syst. 2 (1987) 121].
In our recent study on a general four-boson problem, within a
renormalized zero-ranged model, we verify that it is not enough
only two parameters (which determines trimer properties) to
describe the the four-boson system.
As we move the four-body scale in relation to the three-body one,
a new Tjon lines exist. Therefore, we can have a family of Tjon
lines with slopes depending on the new four-boson scale.
We performed a number of calculations of tetramer properties
within a zero-range model, to show how the dependence on the
new short-range parameter is evidenced through their structure
in momentum space. Our starting point was the exact unitary
limit (infinite scattering length).
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Four-boson systems and Efimov effect

Recent studies on four-boson systems - Theory

Platter, Hammer, Meissner, Phys. Rev. A 70, 52101 (2004);
H.-W. Hammer and L. Platter, Eur. Phys. J. A 32, 113 (2007);
Yamashita, et al., Europhys. Lett. 75, 555 (2006) - 4-boson scale;
Lazauskas and Carbonell, Phys. Rev. A 73, 062717 (2006).
Thøgersen, Fedorov, Jensen, Europhys. Lett. 83, 30012 (2008);
von Stecher, D’Incao, Greene, Nature Physics 5, 417 (2009); von
Stecher, J. Phys. B: At. Mol. Opt. Phys. 43, 101002 (2010);
Wang and Esry, Phys. Rev. Lett. 102, 133201 (2009).
Deltuva, arXiv:1009.1295v1 [physics.atm-clus] and PRA82
(2010);
Hadizadeh, Yamashita, Tomio, Delfino, Frederico, Phys. Rev.
Lett. 107, 135304 (2011); - 4-boson scale & limit cycle -
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Four-boson systems and Efimov effect

Recent studies on four-boson system - Experiments

F. Ferlaino et al., Phys. Rev. Lett. 102, 140401 (2009).
M. Zaccanti et al., Nature Phys. 5, 586 (2009).
S. Pollack et al., Science 326, 1683 (2009), and
www.sciencemag.org/cgi/content/full/1182840/DC1 for
Supporting Online Material.

The recombination rates measured by Zaccanti et al. with 39K, and by
Pollack et al. with 7Li, suggest a change of the three-body parameter
when crossing the Feshbach resonance.
The same effect was also seen in an experiment of atom-dimer loss
in an ultracold trapped gas of a mixture with three hyperfine states of
6Li performed by Nakajima et al.

Nakajima et al. [Phys. Rev. Lett. 105 (2010) 023201; 106 (2011)
143201].
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Four-boson systems and Efimov effect

How many scales in four-boson systems with short-range
interactions?

Hammer et al., EPJA32 (2007)

Deltuva, PRA82 (2010)
No four-body parameter is needed!
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Solving few-body bound state problems

Numerical approaches

GFMC (Wiringa et al. PRC62, 014001 (00)),
NCSM (Navratil et al. PRC62, 054311 (00)),
CRCGV (Hiyama et al. PRL85, 270 (00)),
SV (Usukura et al. PRB59, 5652 (99)),
HH (Viviani et al. PRC 71, 024006 (05)) and EIHH (Barnea et al.
PRC67, 054003 (03))
FY (Yamashita et al EPL75, 555 (06)& Hadizadeh et al. PRC83,
054004 (11) )
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Renormalized zero-range model for four-identical bosons

Subtracted FY coupled equations - regularization -

2-boson scatt. amplitude: τ(ε) =
[
2π2( 1

a −
√
−ε)
]−1

K K K=2 +

H+

H K= 2 + H

G(N)
0 = 1

E−H0
− 1
−µ2

N−H0
with µ3 (RED) (3B collapse) and µ4 (BLUE)
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Tetramer Binding Energies

Our results for the tetramer spectrum

Tetramer ground and excited state binding energies for B2 = 0

µ4/µ3 B(0)
4 /B3 B(1)

4 /B3 − 1 B(2)
4 /B3 − 1 B(3)

4 /B3 − 1
1 3.10
1.6 4.70 7.1×10−4

5 12.5 0.531
10 24.6 1.44
21 63.5 3.62 3.2×10−4

40 184 7.65 0.203
V 70 5.20×102 12.9 0.629 W

100 1.04×103 20.5 1.17
200 4.06×103 50.8 2.86
240 ≈ 0

300 9.11×103 102 4.53
400 1.62×104 153 6.28
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Tetramer Binding Energies

Tetramer ground and excited state binding energies for B2 = 0.02 B3

µ4/µ3 B(0)
4 /B3 B(1)

4 /B3 − 1
1 2.66

1.76 4.24 9.8×10−4

5 10.0 0.421
20 45.9 2.77
40 139 6.10
80 506 13.0

200 2.86×103 39.5
300 6.00×103 69.3
400 9.81×103 104
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Tetramer Binding Energies

Tetramer ground and excited state binding energies for
Bvirtual

2 = 0.02 B3

µ4/µ3 B(0)
4 /B3 B(1)

4 /B3 − 1
1 3.62

1.7 5.91 0.014
5 15.4 0.658

20 74.8 4.18
40 236 9.46
80 873 20.6

200 5.02×103 64.5
300 1.06×104 115
400 1.73×104 174
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Tetramer Binding Energies

Three- and Four-boson Binding Energies
4B at unitary limit a = ±∞

10
-6

10
-4

10
-2

10
0

B
3

(0)

10
-6

10
-4

10
-2

10
0

B
4(N

) N=0

N=1

N=2

10
-6

10
-4

10
-2

10
0

B
2

B
3(N

)

N=0

N=1

N=2

(a) (b)

B
2
=0



Scalings in Few-Body Systems Formalism Model results - The tetramer spectrum Conclusion Further Details

Tetramer Binding Energies

Three- and Four-boson scaling plots
4B at unitary limit a = ±∞
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Tetramer scaling function

“Scaling Properties of Universal Tetramers”
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Deltuva, arXiv (2010)

Stecher JPB43 (2010)
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Hammer-Platter EPJA32 (2007)
Hammer-Platter EPJA32 (2007) (a > 0)
Hammer-Platter EPJA32 (2007) (a < 0)
Interpolation to 1/a = 0 of          and 

Lazauskas-Carbonell PRA73 (2006)

Platter et al. PRA70 (2004)
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- For
√

B3/B4 > 1/22.7 = 0.044 at most three tetramers fit between
two consecutive Efimov trimers -
Hadizadeh et al., PRL 107, 135304 (2011).
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Tetramer scaling function

“Trajectory of Universal Tetramers”

Pattern of 4-boson energies trajectory by increasing the four-body
scale in respect to the three-body one:

E3
(0)

E3
(1)

virtual tetramer

bound tetramer

tetramer resonance in the cut of E3
(1)

tetramer resonance in the cut of E3
(0)
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Tetramer scaling function

“4-atom resonances”
Positions of four-atom recombination peaks (a < 0) where two
successive tetramers become unbound (blue-solid line with boxes).
For comparison, we show results from calculations given in Stecher
et al. (Nat. Phys.’09) (green-triangles) and from experiments reported
in Pollack et al. (Science’09) (red-bullets with error bars) and Ferlaino
et al (PRL’09)(brown ×). (Our first point from left corresponds to
B4 ' 64 B3 at the unitary limit.)
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Yakubovsky Components

Jacobi momenta

K(u2,u3) and H(v2, v3);
〈K|u2|K〉 < 〈K|u3|K〉;
〈H|v3|H〉 < 〈H|v2|H〉;

3

2
4

u1
u 2 u

3

1 1

2
4

3

v1
v2 v 3
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Yakubovsky Components

K(u2,u3) and H(v2, v3)
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Yakubovsky Components

Example

K(u2,u3) and H(v2, v3) for µ4
µ3

= 50; ground tetramer:
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4B Wave Function

Example

Ψ(0,u2,u3) for µ4
µ3

= 50: where βN =

√
E (N)

4 , N = 0,1,2
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Momentum Distribution Functions

n(ui ) = u2
i

∫
duj u2

j

∫
duk u2

k Ψ2(ui ,uj ,uk ); (i , j , k) ≡ (1,2,3) (1)

Example

n(u1),n(u2) and n(u3) for µ4
µ3

= 50:
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Momentum Distribution Functions

Universal momentum distribution functions at unitary (B2 = 0)
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Conclusion

Four-body scale moving two consecutive tetramer states below a
given trimer;
Model independence of the limit cycle - comparison with other
models;
No more than 3 tetramers between consecutive Efimov trimers
for a = ±∞;
Interwoven 3B and 4B limit cycles?
More bosons?

(a < 0)
(  > 0)

E   = - B4               4

3               3E   = - B
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Ref.[22]
Ref.[13]
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|K 4
12,3〉 = G0t12P

[(
1 + P34

)
|K 4

12,3〉+ |H12,34〉
]

|H12,34〉 = G0t12P̃
[(

1 + P34

)
|K 4

12,3〉+ |H12,34〉
]

(2)

|Ψ〉 =
(

1 + P + P34P + P̃
)[(

1 + P34

)
|K 4

12,3〉+ |H12,34〉
]

(3)

P = P12P23 + P13P23 P̃ = P13P24 (4)

Kamada et al., NPA548 (1992)
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Definition of 4B basis states

3

2
4

u1
u 2 u

3

1 1

2
4

3

v1
v2 v 3


u1 = 1

2

(
k1 − k2

)
u2 = 2

3

(
k3 −

(
k1 + k2

))
u3 = 3

4

(
k4 − 1

3

(
k1 + k2 + k3

)) (5)


v1 = 1

2

(
k1 − k2

)
v2 = 1

2

(
k1 + k2

)
− 1

2

(
k3 + k4

)
v3 = 1

2

(
k3 − k4

) (6)
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Subtracted FY coupled equations II - regularization

| K l
ij,k 〉 = 2 τ(ε l

ij,k )

[
G(3)

ij;ik | K
l

ik,j 〉+ G(4)
ij;ik

(
| K j

ik,l 〉+ |Hik,jl 〉
)]

,

|Hij,kl 〉 = τ(εij,kl ) G(4)
ij;kl

[
2 | K j

kl,i 〉+ |Hkl,ij 〉

]
.

Projected Green function operators for N = 3 (RED) or 4 (BLUE):

G(N)
ij;ik = 〈χij |

1
E − H0

− 1
−µ2

N − H0
|χik 〉

with µ3 (avoids the Thomas-collapse) and µ4 3- and 4- body
regularization parameters, respectively.
2-boson scatt. amplitude:

tij (ε) = |χij 〉 τij (ε) 〈χij |, τ−1
ij (ε) = 2π2(

1
a
−
√
−ε), 〈pij |χij 〉 = 1,
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Explicit representation of Yakubovsky equations

Hadizadeh et al., FBS40 (2007)
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Zero-range interaction

V (r) = (2π)3 λ δ(r)

〈p|V |p′〉 = λ〈p|χ〉〈χ|p′〉; 〈p|χ〉 =

∫
d3r eip.r δ(r) = 1 (7)

τ(ε) =

[
λ−1 −

∫
d3p

1
ε− p2

]−1

(8)

λ−1 =

∫
d3p

1
B2 − p2 (9)

τ(ε) =
1

2π2

(√
−B2 −

√
−ε
)−1

=
1

2π2

(
1
a
−
√
−ε
)−1

(10)

Amorim et al., PRC46 (1992)
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Subtracted Yakubovsky integral equations

K
(
u2, u3

)
= 4π τ(ε)

∫
du′2u′22

∫
dx

×
[

G(3)
0

(
Π
(
u′2, u2

)
, u′2, u3

)
K
(

u′2, u3

)

+
1

2

∫
dx′G(4)

0

(
Π
(
u′2, u2

)
, Π2

(
u′2, u3, x′

)
, Π3

(
u′2, u3, x′

))
K
(

Π2
(
u′2, u3, x′

)
, Π3

(
u′2, u3, x′

))

+
1

2

∫
dx′G(4)

0

(
Π
(
u′2, u2

)
, Π4

(
u′2, u3, x′

)
, Π5

(
u′2, u3, x′

))
H
(

Π4
(
u′2, u3, x′

)
, Π5

(
u′2, u3, x′

))]
(11)

H
(
v2, v3

)
= 4π τ(ε∗)

∫
dv′3v′23

×
[∫

dx G(4)
0

(
v3, Π6

(
v2, v′3, x

)
, Π7

(
v2, v′3, x

))
K
(

Π6
(
v2, v′3, x

)
, Π7

(
v2, v′3, x

))

+G(4)
0

(
v3, v2, v′3

)
H
(

v2, v′3

)]

Subtracted Green’s Functions:

G(N)
0 =

1
E − H0

− 1
−µ2

N − H0
(12)

µ3: 3B scale µ4: 4B scale
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Numerical solution algorithm

|K 〉 = G0t12P
[(

1 + P34

)
|K 〉+ |H〉

]
|H〉 = G0t12P̃

[(
1 + P34

)
|K 〉+ |H〉

]
(13)

Standard eigenvalue problem

λ(E).ψ = K (E).ψ; ψ =

(
K
H

)
(14)

Searching E to get the solution of coupled Yakubovsky integral
equations with λ = 1.
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Integration: Gaussian quadrature

magnitudes of Jacobi momenta: 80-160 mesh points
polar angles: 40 mesh points

Eigenvalue problem: Lanczos type method

Iterative orthogonal vectors (IOV) (Stadler PRC44 2319)
ARPACK Fortran library
(http://www.caam.rice.edu/software/ARPACK/)

Dimension of eigenvalue problem after using Lanczos technique:
# of iterations-1 ∼ 10!

Multidimensional interpolations: Cubic-Hermit Splines

high computational speed and accuracy (Huber FBS22 107)
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Example

Convergence of 1st and 2nd exited tetramer energies for µ4
µ3

= 300:

ui =
1 + xi

c1(1− xi ) + c2xi
; c1 ≡ µ4

µ3
, c2 = 0.4

xi ∈ [−1,+1] =⇒ ui ∈ [0,0.003] + [0.003,5]
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