Fermionic Efimov States & A New Emerging Universality

Masahito Ueda

University of Tokyo, ERATO JST, APSA

Collaborators

Theory

Pascal Naidon, Emiko Hiyama (RIKEN)

Experiment

Shuta Nakajima (Kyoto U.) Munekazu Horikoshi (U. Tokyo) Takashi Mukaiyama (U. Electro-Comm.)

P. Naidon, MU, PRL 103, 073203 (2009); Compt. Rend. Phys. 12, 13 (2011)
S. Nakajima, et al., PRL 105, 023201 (2010); ibid. 106, 143201 (2011)
P. Naidon, E. Hiyama, and M. U., arXiv: 1109.5807

What's the Efimov Effect?

V. Efimov, Phys. Lett. **33B**, 563 (1970) Sov. J. Nucl. Phys. **12**, 589 (1971)

3 spinless neutral particles, interacting through a potential

 $gV(\mathbf{r}), V(\mathbf{r}) < 0$

3-body threshold Near a 2-body threshold $(g = g_0)$, an effective 2-body threshold g_0 3-body force emerges: *a* < 0 $(a = \infty)$ a > 0resonant character: $a \gg r_0$ = range of forces $(\bullet \bullet)$ \bigcirc dimer trimer universal long-range attraction $-R^{-2}$ (\cdot) (independent of the detailed structure of $V(\mathbf{r})$) supports an infinitely many 3-body bound states with discrete scaling symmetry and accumulation point at $g = g_0$

 $\frac{a_{n+1}}{a_n} \approx e^{\pi/s_0} \approx 22.7, \quad s_0 = 1.00624...$ (universal scaling parameter)

"Matryoshka doll" scaling

Experimental Signatures: Loss Maxima and Minima

Some Remarks

• The universal attractive potential $\left(-R^{-2}\right)$ permits continuous scale invariance:

$$H = -\nabla_R^2 - R^{-2} \xrightarrow{R \to \lambda R} \lambda^{-2} H$$

 However, because of the 3-body parameter K_{*} only discrete scale invariance is permitted:

$$E_n \to e^{-\frac{2\pi}{s_0}(n-n_*)} \frac{\hbar^2 \kappa_*^2}{M}$$
 as $n \to \infty$ with $a = \pm \infty$

- The 3-body parameter is a free parameter in the Efimov theory.
- In principle, it can take any random value from one FBR to another, let alone from one atomic species to another.

Some Experimental Achievements in Ultracold Atomic Gases

2006 Efimov trimers identified in ¹³³Cs. T. Kraemer, et al., Nature **440**, 315 (2006) B. D. Esry, et al., PRL **83**, 1751 (1999) [theory]

2008 Efimov trimers observed in a mass-imbalance system of ⁴¹K &⁸⁷Rb.[•] G. Barontini, et al., PRL **103**, 043201 (2009)

2009 Discrete scaling law between loss minima observed. 39 K M. Zaccanti, et al., Nature Phys. **5**, 586 (2009)

```
2009-2010 Universality across the Feshbach resonance

<sup>7</sup>Li N. Gross, et al., PRL 103, 163202 (2009)

PRL 105, 103203 (2010)

cf. S. E. Pollack, et al., Science 326, 1683 (2009)

M. Zaccanti, et al., ibid.
```

2009 A pair of universal tetramers for each Efimov trimer.
H.Hammer and L. Platter, Eur. Phys. J. A32, 113 (2007) [theory]^{10**}
J. Von Stecher, et al., Nature Physics 5, 417 (2009) [theory]
F. Ferlaino, et al., PRL 102, 140401 (2009) [experiment]

Our System: 3-Component Fermi System of ⁶Li

-200

 $\frac{1}{2}$ (electronic) \otimes 1 (nuclear) = $\frac{1}{2} \oplus \frac{3}{2}$ (hyperfine)

- Broad FBR for each pair of states
- Two universal regions (A, B)
- Can test different aspects of Efimov physics: tri-atomic resonance atom-dimer resonance

Enhanced Loss in a 3-Component Fermi System of ⁶Li

T. B. Ottenstein, et al., PRL **101**, 203202 (2008) J. H. Huckans, et al., PRL **102**, 165302 (2009) J.R. Williams, et al., PRL**103**, 130404 (2009)

- > Stable if each pair of states alone is populated.
- Unstable at 130G only if all three states are populated.
 - \rightarrow smoking gun of Efimov states

Efimov Senario confirmed by theories

effective field theory

E. Braaten, et. al., PRL 103, 073202 (2009)

hyperspherical analysis

P. Naidon and MU, PRL 103, 073203 (2009)

functional renormalization group theory

S. Floerchinger, et al., PRA **79**, 053633 (2009)

semiclassical approach Seth T. Rittenhouse, PRA **81**, 040701 (R) (2010)

Efimov Trimer vs. Feshbach Senarios

P. Naidon, MU, PRL 103, 073203 (2009)

Theory confirms that the loss peak corresponds to a tri-atomic association threshold of Efimov trimers.

A Possible Unification?

Single-Channel Model

P. Naidon, MU, C. R. Physique **12**, 13 (2011)

J. H. Huckans, et al., PRL 102, 165302 (2009)

- T. B. Ottenstein, et al., PRL 101, 203202 (2008)
- J.R. Williams, et al., PRL 103, 130404 (2009)
- The single-channel model with energy-dependent scattering lengths and a fixed three-body parameter qualitatively reprodues an overall feature of the entire region.
- But not quite good for universal region A.

Why?

Qualitative Deviation from Universal Theory

Deep dimers, which are not taken into account in the universal model, introduce effective-range correations. ↓ The coupled-channel nature matters!

Two-Channel Model

P. Naidon, MU, C. R. Physique 12, 13 (2011)

- J. H. Huckans, et al.,
 PRL 102, 165302 (2009)
- T. B. Ottenstein, et al., PRL 101, 203202 (2008)
- J.R. Williams, et al.,
 PRL **103**, 130404 (2009)

Two-channel model captures a global feature in the entire region.

Zero-energy Efimov physics well described by a two-channel model with energy-dependent scattering length and finiterange corrections.

Atom-Dimer-Efimov Resonance

S. Nakajima *et.al.*, PRL **105**, 023201 (2010) T. Lompe, *et al.*, PRL **105**, 103201 (2010)

1st excited Efimov state

Ground-state Efimov state

Two loss peaks associated with atom(1)+dimer (23) \leftrightarrow trimer For the ground and first excited state trimers observed.

✓ New pieces of information on the three-body parameter for nonzero energy Efimov trimers

Three-Body Parameter

RF Association of Efimov Trimers

S. Nakajima, et al., Phys. Rev. Lett. 106, 143201 (2011)

T. Lompe *et.al.*, Science **330**, 940 (2010)

Number of atoms in state |2> vs RF frequency

Temperature Dependence of Efimov Binding Energy

Energy Dependence of 3-Body Parameter

- S. Nakajima, et al., PRL **106**, 143201 (2011)
- T. Lompe, et al., Science <u>330</u>, **940** (2010)

- non-monotonic energy dependence of Λ as large as 15 % multichannel effect? finite-range effect? 3-body physics?
- A small uncertainly ($\leq 0.7\%$) in *a* can cause a large (5%) variation of Λ .

Even more precise measurement of *a* is needed.

- Evidence of near-constant (in log scale) three-body parameter in Cs (Innsbruck).
- Several alkali's (133Cs, 7Li, 85Rb) give similar values in a_/avdw.
- Let's check this theoretically using a realistic potential.

Results of He-4 Trimers

- Realistic LM2M2 potential [R.A. Aziz, M.J. Slaman, J. Chem. Phys. 94, 8047 (1991)]
- Solve Shrödinger equation with the Gaussian expansion method

Figure 1: LM2M2 potential [25] used for the realistic calculations. The dotted curve indicates the van der Waals asymptote $-C_6/r^6$.

Let's Compare with Cs, Rb, K, Li

He-4 Trimers: Comparison with Cs, Rb, K, Li

Conclusions

- Fermionic Li system provides a weath of information about Efimov physics.
- a(E) and effective range capture an overall feature of two universal regions (A and B) at zero energy.
- 3-body parameter shows irregular behavior (15%) at negative energy.
- Mounting evidence of near-constant 3-body parameter at zero energy not only across different universal regimes (A, B) but also across different species.