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Motivation

Atomic interactions are difficult.
Scattering length approximation, a ≫ r0.
Three-particle interactions lead to losses

ṅ = −αn3 α = C (a) · a4 C (a) = C (22.7a)

What are the next order effects?
We include the effective range in two ways:

By the effective range expansion in the zero range model

By utilising a two-channel model, effectively describing the
physics of Feshbach resonances

The recombination rate is calculated and compared to experiment.
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Outline of the talk

Introduce the different models we are using.

Describe basic Feshbach-resonance physics and how it relates
to the models.

Introduce description of three particles using hyperspherical
coordinates

Discuss initial consequences of effective range

The recombination process and how we calculate it

Finite range effects on recombination rate

Comparison to experiments

How we will deal with N > 3 particles
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d2ψ
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= Eψ(r) ψ(r) = A sin(kr + δ(k))

subjected to the boundary condition

ψ′

ψ

∣

∣

∣

∣

r=0

= k cot δ = −1

a

Efimov effect: En = E0 · (22.7)−2n , when |a| → ∞.
Thomas effects: No lower bound on bound state energy.
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The Zero Range Model With Finite Range

From scattering theory we also have the effective range expansion

lim
k→0

k cot δ = −1
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+
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2
Rk2

R = the effective range.
Simply change the boundary condition

ψ′

ψ

∣

∣

∣

∣

r=0

= k cot δ = −1

a
+

1

2
Rk2

Thomas effect removed
Efimov effect persists
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Feshbach Resonances
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Taking an additional interaction channel into account

ψ(r) =

[

uc(r)
uo(r)

]

uc(r) = closed channel
uo(r) = open channel

V
(r
)

r

Closed channel

Open channel

E ∗E

The Schrödinger equation is

− ~
2

2m∗u
′′
c = (E − E ∗)uc

− ~
2

2m∗u
′′
o = Euo

E ∗ = energy difference between
channels.
m∗ = the reduced mass.
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r=0
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] [

uc
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]

r=0

With 0 < E < E ∗ we have the solutions

uc(r) = Be−κc r uo(r) = A sin(ko r + δ)

Inserted into the boundary condition gives

lim
k→0

k cot δ = −1

a
+

1

2
Rk2

where the scattering length and effective range are given by

1

a
=

1

ao
+

β2

κ− 1
ac

R =
−β2

κ
(

κ− 1
ac

)2
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The Two-channel model

Feshbach Resonances

a(B) = abg

(

1− ∆B

B − B0

)

1

a
=

1

ao
+

β2

κ− 1
ac

B

a

B0

∆B

B0 =
1

∆µ
(E ∗ − E0) , ∆B =

1

∆µ

~
2κ0β

2ao

m∗

E0 =
~
2κ20
2m∗ , R = − 1

ao

~
2

m∗∆µ∆B
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The Two-channel model

Feshbach resonance for 23Na

Two-channel
Phenomenological

Magnetic Field [G]

a/abg

915910905900895

1

Data from Stenger et al, Phys. Rev. Lett., 82, (1999)

B0 = 907G, ∆B = 0.7G, R = −21abg
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Hyperspherical coordinates

From the Cartesian coordinates
describing three particles . . .

2
~r12

1

3
~r13

~r23

. . . can be constructed the
hyperspherical coordinates:

∝ ~y1

1

3

∝ ~x1

2

With the hyperradius ρ and hyperangle αi given by

ρ2 = x2i + y2i ρ sinαi = xi ρ cosαi = yi
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One-channel Zero Range Model

Adiabatic Expansion

We expand the wavefunction on adiabatic basis states Φn(ρ,Ω)

Ψ(ρ,Ω) = ρ−5/2
∑

n

fn(ρ)Φn(ρ,Ω)

where Φn are solution to the hyperangular equation

(

Λ +
2mρ2

~2
V

)

Φn(ρ,Ω) = λn(ρ)Φn(ρ,Ω)

Λ = Grand angular momemtum operator.
Zero range potentials means V = 0.
At low energy only s-wave states are used.
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The boundary condition for the effective range expansion
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1
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µκ− 1

ac

)2



Finite Range Effects

Two-channel Zero Range model

Interpretation of Adiabatic Channels

Interpretation of Adiabatic Channels

(

− d2

dρ2
+
ν2n − 1/4

ρ2
− Qnn(ρ)−

2mE

~2

)

fn(ρ) = 0

ρ

ν2n − 1
4

ρ2

n = 0

n = 1



Finite Range Effects

Two-channel Zero Range model

Interpretation of Adiabatic Channels

Interpretation of Adiabatic Channels

(

− d2

dρ2
+
ν2n − 1/4

ρ2
− Qnn(ρ)−

2mE

~2

)

fn(ρ) = 0

ρ

ν2n − 1
4

ρ2

− 1

µa2

n = 0

n = 1



Finite Range Effects

Two-channel Zero Range model

Interpretation of Adiabatic Channels

Interpretation of Adiabatic Channels

(

− d2

dρ2
+
ν2n − 1/4

ρ2
− Qnn(ρ)−

2mE

~2

)

fn(ρ) = 0

ρ

ν2n − 1
4

ρ2

− 1

µa2

n = 0

n = 1

A2 + A



Finite Range Effects

Two-channel Zero Range model

Interpretation of Adiabatic Channels

Interpretation of Adiabatic Channels

(

− d2

dρ2
+
ν2n − 1/4

ρ2
− Qnn(ρ)−

2mE

~2

)

fn(ρ) = 0

ρ

ν2n − 1
4

ρ2

− 1

µa2

n = 0

n = 1

A2 + A

A+ A+ A



Finite Range Effects

Two-channel Zero Range model

Analytical properties

Analytical properties

One- and two-channel model

ν0(ρ)
ρ→∞−−−→ iρ√

µa
, ν0(0) = 1.00624i



Finite Range Effects

Two-channel Zero Range model

Analytical properties

Analytical properties

One- and two-channel model

ν0(ρ)
ρ→∞−−−→ iρ√

µa
, ν0(0) = 1.00624i

Effective range model

ν0
ρ→∞−−−→ iρ√

µa

(

1 +
R

2a

)

, ν0
ρ→0−−−→= i

√

−1.81ρ√
µR



Finite Range Effects

Two-channel Zero Range model

Analytical properties

Analytical properties

One- and two-channel model

ν0(ρ)
ρ→∞−−−→ iρ√

µa
, ν0(0) = 1.00624i

Effective range model

ν0
ρ→∞−−−→ iρ√

µa

(

1 +
R

2a

)

, ν0
ρ→0−−−→= i

√

−1.81ρ√
µR

For all models when a → ∞

ν0(ρ) → 1.00624i



Finite Range Effects

Two-channel Zero Range model

Analytical properties

Analytical properties

One- and two-channel model

ν0(ρ)
ρ→∞−−−→ iρ√

µa
, ν0(0) = 1.00624i

Effective range model

ν0
ρ→∞−−−→ iρ√

µa

(

1 +
R

2a

)

, ν0
ρ→0−−−→= i

√

−1.81ρ√
µR

For all models when a → ∞

ν0(ρ) → 1.00624i

Efimov effect: exp(π/1.00624) ≈ 22.7.
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Radial potentials

R expansion
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Radial potentials

Eigenvalue solution

The n = 0 adiabatic eigenvalue solutions.
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Two-channel Zero Range model

Radial potentials

Eigenvalue solution

The n = 1 adiabatic eigenvalue solutions.
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Recombination

Recombination is a three-body process in which

A+ A+ A → A2 + A

The loss rate due to
recombination is given by

ṅ = −αn3

where n is the particle density
and α is denoted the
recombination coefficient.
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Hidden Crossing
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Transition probability

P(k) = e−2S sin2 ∆

∆+ iS =

∫

c

dρ

√

k2 − ν(ρ)2

ρ2

αrec = 8(2π)23
√
3

~

µm
lim
k→0

P(k)

k4

The phase ∆ gives rise to interference effects.
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Hidden Crossing Theory

Recombination coefficient

The regularisation cut-off is chosen such that the recombination
minimum at a∗2 is the same for all models.
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Hidden Crossing Theory

Recombination coefficient

Increasing |R | whilst fixing a∗2 moves the minimum at a∗1.
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Hidden Crossing Theory

Recombination coefficient for 7
Li

Two-channel
One-channel
Experimental data
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Data from Hullet et al, Science, 326, (2009)
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Conclusion

Simple models with effective range were introduced

Feshbach physics was intimately linked to one of the models

Effective range effects in hyperangular momentum barrier

Recombination via hidden crossing and further effective range
effects
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Next Steps
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Eigenvalue equation becomes:

ρ√
µa

= T12 + T13 + T34

Again solve for ν(rho) and apply hidden crossing method.
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