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Motivation

Atomic interactions are difficult.
Scattering length approximation, a > rp.
Three-particle interactions lead to losses

h=—an’ a=C(a)-a* C(a) = C(22.7a)

What are the next order effects?
We include the effective range in two ways:

m By the effective range expansion in the zero range model

m By utilising a two-channel model, effectively describing the
physics of Feshbach resonances

The recombination rate is calculated and compared to experiment.
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Outline of the talk

m Introduce the different models we are using.

m Describe basic Feshbach-resonance physics and how it relates
to the models.

m Introduce description of three particles using hyperspherical
coordinates

Discuss initial consequences of effective range
The recombination process and how we calculate it
Finite range effects on recombination rate

Comparison to experiments

How we will deal with N > 3 particles
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The Zero Range Model

The basic zero range model consists of free solutions to the
Schrodinger equation

——— = Ey(r) P(r) = Asin(kr 4 0(k))

subjected to the boundary condition
,lp/
¢ r=0

Efimov effect: E, = Eg - (22.7)72", when |a| — .
Thomas effects: No lower bound on bound state energy.

1
= kcotd = ——
a
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The Zero Range Model With Finite Range

From scattering theory we also have the effective range expansion

1 1
lim kcotd = —= + = Rk?
k—0 a 2

R = the effective range.
Simply change the boundary condition
! 1 1
v = kcotd = —= + ~Rk?
Y r=0 d 2

Thomas effect removed
Efimov effect persists
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L Feshbach Intermezzo

Feshbach Resonances

Closed channel
T

Energy

- BT

Distance

Zeeman-effect:

E* — E*— AuB
AB

a(B) = dpg <1 — 8—780>

Open channel
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The Two-channel model

Taking an additional interaction channel into account

uc(r) = closed channel
open channel

<
—
~
N
I
—
S <
o 0
—_
=~
N N
[E—
j~
o
—
~
N—r
I

The Schrodinger equation is

hz "
i —2m*UC:(E—E)UC
LL_ - h2

i r T ug = Eu,
Open channel

E* = energy difference between
channels.
m* = the reduced mass.
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The Two-channel model

The boundary condition becomes

(0 r—0 a - |:u:7:| r=0 B |: B _a_lo Uo],—g

With 0 < E < E* we have the solutions
uc(r) = Be "<’ uo(r) = Asin(kor + 90)

Inserted into the boundary condition gives
1 1
lim kcotd = —= + = Rk?
k—0 a 2
where the scattering length and effective range are given by

1 1 2
— = +—5 R =

S — —
a a K- m(m—i)
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Feshbach Resonances

m AB
—
-/ B
1 1 h2/‘00,32ao
By = — (E* — F AB = — [TFoP 3o
0 A,u( 0) Ay m*
2,2 1 2
Eozhﬁo R I

2m*’ T a, m*AuAB
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Feshbach resonance for 23Na

T T
Phenomenological _—
Two-channel

a/abg

895 900 905
Magnetic Field [G]
Data from Stenger et al, Phys. Rev. Lett., 82, (1999)

Bo = 907 G, AB =0.7 G, R= —2labg
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Hyperspherical coordinates

From the Cartesian coordinates ... can be constructed the
describing three particles . .. hyperspherical coordinates:
2 2
o o
rnz
1 , 1 N
(") 3 ] - X X1
\ X Y1
A3
(") )
3 3

With the hyperradius p and hyperangle «; given by

2 2 2 :
pT =Xty psin o = X; pCcosa; = y;
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Adiabatic Expansion

We expand the wavefunction on adiabatic basis states ®,(p, Q)
V(p, Q) =p>"2 " f(p)®n(p, Q)

where ®,, are solution to the hyperangular equation

(n+ el V) @2l 2) = dlp) (5

N = Grand angular momemtum operator.
Zero range potentials means V = 0.
At low energy only s-wave states are used.
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Zero Range Angular Eigenvalue Equation

For zero-range potentials the solutions are

d(p,Q) = 3 %7 vi(p,a;i) = Ni(p)sin [V(p) (ai — E)}
i=1 !

The boundary condition

v
v

r—0 a Oa;
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Zero Range Angular Eigenvalue Equation

For zero-range potentials the solutions are

wi(p, a’) , vi(p, ;) = Ni(p)sin [V(p) (ai N g)}

sin(2«;)

The boundary condition

! 1 ;o 1
1 (e ®) _ 21
@b r=0 a aOéi a;=0 Hi ai a;=0
yields
s 8 s
vcos (vy) — —==sin (V% 1
Il CAC RN
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Effective Range Expansion Angular Eigenvalue Equation

The boundary condition for the effective range expansion

8(05,'(]))

oo

P 1 1,0
- _C 4 DRK?|
a;=0 \/,LT, |: aj * 2 I :| “

a;=0
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Effective Range Expansion Angular Eigenvalue Equation

The boundary condition for the effective range expansion

P 1 1,0
= P SRk 0
a;=0 \/,LT, |: aj * 2 I :| “

veos () - B (), [1 1 [y’
sin (%) ‘ﬁ[z‘ﬂp)]

8(05,'(]))
oo

a;=0

yields
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Two-channel Generalisation

The hyperspherical two-channel boundary condition is

d |:ai¢c(paQi):| _ P _a_lc Bi |:ai¢c(qui)}
0aj [ai®(p, )] |o VI | B oz | Li®olp, Qi)

a;j=0
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I—Two—channel Zero Range model

Two-channel Generalisation

The hyperspherical two-channel boundary condition is

) [a,«bc(p,ﬂi)} _L[Tc Bi ] [afd’c(ﬂvﬂf)}

dai [0i®o(p. )] oo VA | B —a5] Lai®ele, )] |4
yields
# sin (ug) sin (ﬂg) — fo(V)fe(P) =0
fi(v) = v cos (1/%) — %sin (1/%) — %al/ sin (V%) , I=o,c.
% ~1, P R = il

1 2
do \/ﬁﬁ_a_c \//_LKJ(\//_LH—QLC)
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I—Analytical properties

Analytical properties

One- and two-channel model

p—00 Ip

Vha'

vo(p) 10(0) = 1.00624

Effective range model

] R —1.81
v 22 0 (1 ) 2% p
Vpa 2a 4T

For all models when a — oo

vo(p) — 1.00624i

Efimov effect: exp(7/1.00624) ~ 22.7.
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R expansion
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I—Radial potentials

Eigenvalue solution

The n = 0 adiabatic eigenvalue solutions.

0 : b II T I T I T I
2P 4
4 L 4

-0.5 ¢ -6 4

200 400 600 800 1000 |

~- " T

| One-channel

Two-channel

R expansion
1

0 20 40 60 80 100 120 140
Hyperradius p
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I—Radial potentials

Eigenvalue solution

The n =1 adiabatic eigenvalue solutions.

20 -I- T T T T
I I s — |
16 ==::=_=5== “One-channel
14 Two-channel
q R expansion
v2 12 § 20 ]
10 | -
6 u 1 1 1 1 N
Al 0 200 400 600 8001000

0 50 100 150 200 250 300
Hyperradius p
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Recombination

Recombination is a three-body process in which

A+A+ A= A+ A

The loss rate due to
recombination is given by

n=—an

where n is the particle density
and « is denoted the
recombination coefficient.
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L Recombination

The WKB-approximation

The WKB tunneling probability is

Xb
Tre? iS= %/ V2m(E — V/(x))dx

4 T T T T T T
3L i
V(X) 2L 4
E ‘ ‘ Ir X3 Xp T
J \ X o
: : 1} 1
Xa Xp x oL ]
<2 -
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L Recombination

The WKB-approximation

The WKB tunneling probability is

Xb
Tre? iS= %/ V2m(E — V/(x))dx

4 T T T T T T
3 i
V(X) 2L 4
E . . LF Xa Xb ]
J \ 0
: : -1 T
X3 Xp x o 2 i
3+ | . ]

0 2 4 6 8 10 12 14
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Hidden Crossing

Transition probability

P(k) = e ®sin> A
0.4
Re(%;)O'Z >
b [anfi P
04 c p
h . P(k)
rec = 8(27)? |
Orec = 8(27) 3\/§um 00 kA

The phase A gives rise to interference effects.
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Recombination coefficient

The regularisation cut-off is chosen such that the recombination
minimum at a3 is the same for all models.

1018 : .
_»9 [ One-channel ——
10720 [ Two-channel ——
—~ 10722 | R expansion = ———
w1074 [ a
g 10720 l 10—27
<U 10728 [ y 10—29
S 107 | 10-%
10—32 I 10_33
10—34 L

Scattering length a/ag
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Recombination coefficient

Increasing |R| whilst fixing a5 moves the minimum at aj.

170 T T T T
One-channel ——
160 | Two-channel —— |
R expansion
150 .
aj 140 i
130 \
120
110 1 1 1 1
-50 -40 -30 -20 -10 0

Effective Range R
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Recombination coefficient for “Li

0¥ —
Experimental data

10~20 | One-channel —_—
Two-channel _—

10—22
10-%
10—26

a/(cmbs71)

10—28

10—30

...|aI R R ..jk’...l_ :. R
102 103 10*
a/aog

10—32

Data from Hullet et al, Science, 326, (2009)
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Conclusion

Simple models with effective range were introduced
Feshbach physics was intimately linked to one of the models
Effective range effects in hyperangular momentum barrier

Recombination via hidden crossing and further effective range
effects
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Next Steps

How to deal with N > 3

s 8 s
4 P 1_VCOS(V§)—%SH"I (7/6)
o ) 5 JVia sin (v3)
X 73 @
Eigenvalue equation becomes:
3 _
o S XM p
X 12 —— =T+ Tiz+ Tz
NE
1

Again solve for v(rho) and apply hidden crossing method.
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