Sixth Workshop on the Critical Stability of Quantum Few-Body Systems Erice, Sicily, October 2011

Finite Range Effects in Three-body Recombination of Cold Atomic Gasses

Peder K. Sørensen Dmitri V. Fedorov Aksel S. Jensen

Aarhus University, Denmark

(日) (四) (분) (분) (분) 분

Atomic interactions are difficult.

Atomic interactions are difficult. Scattering length approximation, $a \gg r_0$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Atomic interactions are difficult. Scattering length approximation, $a \gg r_0$. Three-particle interactions lead to losses

$$\dot{n} = -\alpha n^3$$
 $\alpha = C(a) \cdot a^4$ $C(a) = C(22.7a)$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Atomic interactions are difficult. Scattering length approximation, $a \gg r_0$. Three-particle interactions lead to losses

$$\dot{n} = -\alpha n^3$$
 $\alpha = C(a) \cdot a^4$ $C(a) = C(22.7a)$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

What are the next order effects?

Atomic interactions are difficult. Scattering length approximation, $a \gg r_0$. Three-particle interactions lead to losses

$$\dot{n} = -\alpha n^3$$
 $\alpha = C(a) \cdot a^4$ $C(a) = C(22.7a)$

What are the next order effects? We include the effective range in two ways:

By the effective range expansion in the zero range model

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Atomic interactions are difficult. Scattering length approximation, $a \gg r_0$. Three-particle interactions lead to losses

$$\dot{n} = -\alpha n^3$$
 $\alpha = C(a) \cdot a^4$ $C(a) = C(22.7a)$

What are the next order effects?

We include the effective range in two ways:

- By the effective range expansion in the zero range model
- By utilising a two-channel model, effectively describing the physics of Feshbach resonances

Atomic interactions are difficult. Scattering length approximation, $a \gg r_0$. Three-particle interactions lead to losses

$$\dot{n} = -\alpha n^3$$
 $\alpha = C(a) \cdot a^4$ $C(a) = C(22.7a)$

What are the next order effects?

We include the effective range in two ways:

- By the effective range expansion in the zero range model
- By utilising a two-channel model, effectively describing the physics of Feshbach resonances

The recombination rate is calculated and compared to experiment.

Introduce the different models we are using.

- Introduce the different models we are using.
- Describe basic Feshbach-resonance physics and how it relates to the models.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

- Introduce the different models we are using.
- Describe basic Feshbach-resonance physics and how it relates to the models.
- Introduce description of three particles using hyperspherical coordinates

- Introduce the different models we are using.
- Describe basic Feshbach-resonance physics and how it relates to the models.
- Introduce description of three particles using hyperspherical coordinates

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Discuss initial consequences of effective range

- Introduce the different models we are using.
- Describe basic Feshbach-resonance physics and how it relates to the models.
- Introduce description of three particles using hyperspherical coordinates

- Discuss initial consequences of effective range
- The recombination process and how we calculate it

- Introduce the different models we are using.
- Describe basic Feshbach-resonance physics and how it relates to the models.
- Introduce description of three particles using hyperspherical coordinates

- Discuss initial consequences of effective range
- The recombination process and how we calculate it
- Finite range effects on recombination rate

- Introduce the different models we are using.
- Describe basic Feshbach-resonance physics and how it relates to the models.
- Introduce description of three particles using hyperspherical coordinates

- Discuss initial consequences of effective range
- The recombination process and how we calculate it
- Finite range effects on recombination rate
- Comparison to experiments

- Introduce the different models we are using.
- Describe basic Feshbach-resonance physics and how it relates to the models.
- Introduce description of three particles using hyperspherical coordinates
- Discuss initial consequences of effective range
- The recombination process and how we calculate it
- Finite range effects on recombination rate
- Comparison to experiments
- How we will deal with N > 3 particles

The basic zero range model consists of free solutions to the Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dr^2} = E\psi(r) \qquad \psi(r) = A\sin(kr + \delta(k))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

The basic zero range model consists of free solutions to the Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dr^2} = E\psi(r) \qquad \psi(r) = A\sin(kr + \delta(k))$$

subjected to the boundary condition

$$\left.\frac{\psi'}{\psi}\right|_{r=0} = k \cot \delta = -\frac{1}{a}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

The basic zero range model consists of free solutions to the Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dr^2} = E\psi(r) \qquad \psi(r) = A\sin(kr + \delta(k))$$

subjected to the boundary condition

$$\left.\frac{\psi'}{\psi}\right|_{r=0} = k \cot \delta = -\frac{1}{a}$$

Efimov effect: $E_n = E_0 \cdot (22.7)^{-2n}$, when $|a| \to \infty$.

The basic zero range model consists of free solutions to the Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dr^2} = E\psi(r) \qquad \psi(r) = A\sin(kr + \delta(k))$$

subjected to the boundary condition

$$\left.\frac{\psi'}{\psi}\right|_{r=0} = k \cot \delta = -\frac{1}{a}$$

The basic zero range model consists of free solutions to the Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dr^2} = E\psi(r) \qquad \psi(r) = A\sin(kr + \delta(k))$$

subjected to the boundary condition

$$\left.\frac{\psi'}{\psi}\right|_{r=0} = k \cot \delta = -\frac{1}{a}$$

Efimov effect: $E_n = E_0 \cdot (22.7)^{-2n}$, when $|a| \to \infty$. Thomas effects: No lower bound on bound state energy.

Extending The Zero Range Model

The Zero Range Model With Finite Range

From scattering theory we also have the effective range expansion

$$\lim_{k\to 0} k \cot \delta = -\frac{1}{a} + \frac{1}{2}Rk^2$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

R = the effective range.

Extending The Zero Range Model

The Zero Range Model With Finite Range

From scattering theory we also have the effective range expansion

$$\lim_{k \to 0} k \cot \delta = -\frac{1}{a} + \frac{1}{2}Rk^2$$

R = the effective range.

Simply change the boundary condition

$$\left.\frac{\psi'}{\psi}\right|_{r=0} = k \cot \delta = -\frac{1}{a} + \frac{1}{2}Rk^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Extending The Zero Range Model

The Zero Range Model With Finite Range

From scattering theory we also have the effective range expansion

$$\lim_{k \to 0} k \cot \delta = -\frac{1}{a} + \frac{1}{2}Rk^2$$

R = the effective range.

Simply change the boundary condition

$$\left.\frac{\psi'}{\psi}\right|_{r=0} = k \cot \delta = -\frac{1}{a} + \frac{1}{2}Rk^2$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Thomas effect removed Efimov effect persists

Extending The Zero Range Model

Feshbach Intermezzo

Feshbach Resonances

Extending The Zero Range Model

Feshbach Intermezzo

Feshbach Resonances

Extending The Zero Range Model

Feshbach Intermezzo

Feshbach Resonances

Extending The Zero Range Model

Feshbach Intermezzo

Feshbach Resonances

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ 日 ・

Extending The Zero Range Model

 L
 The

 Two-channel model
 The

The Two-channel model

Taking an additional interaction channel into account

$$\psi(r) = \begin{bmatrix} u_c(r) \\ u_o(r) \end{bmatrix} \qquad \begin{array}{ll} u_c(r) &= \text{ closed channel} \\ u_o(r) &= \text{ open channel} \end{array}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Extending The Zero Range Model

The Two-channel model

Taking an additional interaction channel into account

$$\psi(r) = egin{bmatrix} u_c(r) & u_c(r) & = & ext{closed channel} \\ u_o(r) & u_o(r) & = & ext{open channel} \end{cases}$$

The Schrödinger equation is

$$-\frac{\hbar^2}{2m^*}u_c'' = (E - E^*)u_c$$
$$-\frac{\hbar^2}{2m^*}u_o'' = Eu_o$$

 $E^* =$ energy difference between channels.

 $m^* =$ the reduced mass.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Extending The Zero Range Model The Two-channel model

The Two-channel model

The boundary condition becomes

$$\frac{\psi'}{\psi}\Big|_{r=0} = -\frac{1}{a} \quad \rightarrow \quad \begin{bmatrix} u'_c \\ u'_o \end{bmatrix}_{r=0} = \begin{bmatrix} -\frac{1}{a_c} & \beta \\ \beta & -\frac{1}{a_o} \end{bmatrix} \begin{bmatrix} u_c \\ u_o \end{bmatrix}_{r=0}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Extending The Zero Range Model

 L
 The

 Two-channel model
 The

The Two-channel model

The boundary condition becomes

$$\frac{\psi'}{\psi}\Big|_{r=0} = -\frac{1}{a} \quad \rightarrow \quad \begin{bmatrix} u'_c \\ u'_o \end{bmatrix}_{r=0} = \begin{bmatrix} -\frac{1}{a_c} & \beta \\ \beta & -\frac{1}{a_o} \end{bmatrix} \begin{bmatrix} u_c \\ u_o \end{bmatrix}_{r=0}$$

With $0 < E < E^*$ we have the solutions

$$u_c(r) = Be^{-\kappa_c r}$$
 $u_o(r) = A\sin(k_o r + \delta)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Extending The Zero Range Model

The Two-channel model

The boundary condition becomes

$$\frac{\psi'}{\psi}\Big|_{r=0} = -\frac{1}{a} \quad \rightarrow \quad \begin{bmatrix} u'_c \\ u'_o \end{bmatrix}_{r=0} = \begin{bmatrix} -\frac{1}{a_c} & \beta \\ \beta & -\frac{1}{a_o} \end{bmatrix} \begin{bmatrix} u_c \\ u_o \end{bmatrix}_{r=0}$$

With $0 < E < E^*$ we have the solutions

$$u_c(r) = Be^{-\kappa_c r}$$
 $u_o(r) = A\sin(k_o r + \delta)$

Inserted into the boundary condition gives

$$\lim_{k \to 0} k \cot \delta = -\frac{1}{a} + \frac{1}{2}Rk^2$$

where the scattering length and effective range are given by

$$\frac{1}{a} = \frac{1}{a_o} + \frac{\beta^2}{\kappa - \frac{1}{a_c}} \qquad \qquad R = \frac{-\beta^2}{\kappa \left(\kappa - \frac{1}{a_c}\right)^2}$$

Extending The Zero Range Model

The Two-channel model

Feshbach Resonances

$$a(B) = a_{bg} \left(1 - rac{\Delta B}{B - B_0}
ight)$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Extending The Zero Range Model

The Two-channel model

Feshbach Resonances

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Extending The Zero Range Model

The Two-channel model

Feshbach Resonances

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで
Extending The Zero Range Model

The Two-channel model

Feshbach Resonances

Extending The Zero Range Model

The Two-channel model

Feshbach resonance for ²³Na

 $B_0 = 907 \,\mathrm{G}, \qquad \Delta B = 0.7 \,\mathrm{G}, \qquad R = -21 a_{bg}$

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

Extending The Zero Range Model

Dealing with three particles

Hyperspherical coordinates

From the Cartesian coordinates describing three particles ...

・ロト ・聞ト ・ヨト ・ヨト

э

Extending The Zero Range Model

Hyperspherical coordinates

From the Cartesian coordinates describing three particles ...

... can be constructed the hyperspherical coordinates:

・ロト ・ 雪 ト ・ ヨ ト

э

Extending The Zero Range Model

Hyperspherical coordinates

From the Cartesian coordinates describing three particles ...

... can be constructed the hyperspherical coordinates:

 $\rho^2 = x_i^2 + y_i^2$ $\rho \sin \alpha_i = x_i$ $\rho \cos \alpha_i = y_i$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q ()

Extending The Zero Range Model

Adiabatic Expansion

We expand the wavefunction on adiabatic basis states $\Phi_n(\rho, \Omega)$

$$\Psi(\rho,\Omega) = \rho^{-5/2} \sum_n f_n(\rho) \Phi_n(\rho,\Omega)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Extending The Zero Range Model

Adiabatic Expansion

We expand the wavefunction on adiabatic basis states $\Phi_n(\rho, \Omega)$

$$\Psi(\rho,\Omega) = \rho^{-5/2} \sum_{n} f_n(\rho) \Phi_n(\rho,\Omega)$$

where Φ_n are solution to the hyperangular equation

$$\left(\Lambda + \frac{2m\rho^2}{\hbar^2}V\right)\Phi_n(\rho,\Omega) = \lambda_n(\rho)\Phi_n(\rho,\Omega)$$

Extending The Zero Range Model One-channel Zero Range Model

Adiabatic Expansion

We expand the wavefunction on adiabatic basis states $\Phi_n(\rho, \Omega)$

$$\Psi(\rho,\Omega) = \rho^{-5/2} \sum_{n} f_n(\rho) \Phi_n(\rho,\Omega)$$

where Φ_n are solution to the hyperangular equation

$$\left(\Lambda + \frac{2m\rho^2}{\hbar^2}V\right)\Phi_n(\rho,\Omega) = \lambda_n(\rho)\Phi_n(\rho,\Omega)$$

 Λ = Grand angular momentum operator. Zero range potentials means V = 0. At low energy only *s*-wave states are used.

Extending The Zero Range Model

Zero Range Angular Eigenvalue Equation

For zero-range potentials the solutions are

$$\Phi(\rho,\Omega) = \sum_{i=1}^{3} \frac{\varphi_i(\rho,\alpha_i)}{\sin(2\alpha_i)}, \qquad \varphi_i(\rho,\alpha_i) = N_i(\rho) \sin\left[\nu(\rho)\left(\alpha_i - \frac{\pi}{2}\right)\right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Extending The Zero Range Model

Zero Range Angular Eigenvalue Equation

For zero-range potentials the solutions are

$$\Phi(\rho,\Omega) = \sum_{i=1}^{3} \frac{\varphi_i(\rho,\alpha_i)}{\sin(2\alpha_i)}, \qquad \varphi_i(\rho,\alpha_i) = N_i(\rho) \sin\left[\nu(\rho)\left(\alpha_i - \frac{\pi}{2}\right)\right]$$

The boundary condition

$$\left. \frac{\psi'}{\psi} \right|_{r=0} = -\frac{1}{a}$$

Extending The Zero Range Model

Zero Range Angular Eigenvalue Equation

For zero-range potentials the solutions are

$$\Phi(\rho,\Omega) = \sum_{i=1}^{3} \frac{\varphi_i(\rho,\alpha_i)}{\sin(2\alpha_i)}, \qquad \varphi_i(\rho,\alpha_i) = N_i(\rho) \sin\left[\nu(\rho)\left(\alpha_i - \frac{\pi}{2}\right)\right]$$

The boundary condition

$$\frac{\psi'}{\psi}\Big|_{r=0} = -\frac{1}{a} \quad \rightarrow \quad \frac{\partial(\alpha_i \Phi)}{\partial \alpha_i}\Big|_{\alpha_i=0} = -\frac{\rho}{\sqrt{\mu_i}} \frac{1}{a_i} \alpha_i \Phi\Big|_{\alpha_i=0}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Extending The Zero Range Model

Zero Range Angular Eigenvalue Equation

For zero-range potentials the solutions are

$$\Phi(\rho,\Omega) = \sum_{i=1}^{3} \frac{\varphi_i(\rho,\alpha_i)}{\sin(2\alpha_i)}, \qquad \varphi_i(\rho,\alpha_i) = N_i(\rho) \sin\left[\nu(\rho)\left(\alpha_i - \frac{\pi}{2}\right)\right]$$

The boundary condition

$$\frac{\psi'}{\psi}\Big|_{r=0} = -\frac{1}{a} \quad \rightarrow \quad \frac{\partial(\alpha_i \Phi)}{\partial \alpha_i}\Big|_{\alpha_i=0} = -\frac{\rho}{\sqrt{\mu_i}} \frac{1}{a_i} \alpha_i \Phi\Big|_{\alpha_i=0}$$

yields

$$\frac{\nu\cos\left(\nu\frac{\pi}{2}\right) - \frac{8}{\sqrt{3}}\sin\left(\nu\frac{\pi}{6}\right)}{\sin\left(\nu\frac{\pi}{2}\right)} = \frac{\rho}{\sqrt{\mu}}\frac{1}{a} \qquad \lambda(\rho) = \nu^2 - 4$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Extending The Zero Range Model

Effective Range Expansion Angular Eigenvalue Equation

The boundary condition for the effective range expansion

$$\frac{\partial(\alpha_i \Phi)}{\partial \alpha_i} \bigg|_{\alpha_i = 0} = \frac{\rho}{\sqrt{\mu_i}} \left[-\frac{1}{a_i} + \frac{1}{2} R_i k^2 \right] \alpha_i \Phi \bigg|_{\alpha_i = 0}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Extending The Zero Range Model

Effective Range Expansion Angular Eigenvalue Equation

The boundary condition for the effective range expansion

$$\frac{\partial(\alpha_i \Phi)}{\partial \alpha_i}\Big|_{\alpha_i=0} = \frac{\rho}{\sqrt{\mu_i}} \left[-\frac{1}{a_i} + \frac{1}{2}R_i k^2 \right] \alpha_i \Phi \Big|_{\alpha_i=0}$$

yields

$$\frac{\nu\cos\left(\frac{\nu\pi}{2}\right) - \frac{8}{\sqrt{3}}\sin\left(\frac{\nu\pi}{6}\right)}{\sin\left(\frac{\nu\pi}{2}\right)} = \frac{\rho}{\sqrt{\mu}} \left[\frac{1}{a} - \frac{1}{2}R\left(\frac{\sqrt{\mu}\nu}{\rho}\right)^2\right]$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Two-channel Generalisation

The hyperspherical two-channel boundary condition is

$$\frac{\partial}{\partial \alpha_i} \begin{bmatrix} \alpha_i \Phi_c(\rho, \Omega_i) \\ \alpha_i \Phi_o(\rho, \Omega_i) \end{bmatrix} \Big|_{\alpha_i = 0} = \frac{\rho}{\sqrt{\mu}} \begin{bmatrix} -\frac{1}{a_{i,c}} & \beta_i \\ \beta_i & -\frac{1}{a_{i,o}} \end{bmatrix} \begin{bmatrix} \alpha_i \Phi_c(\rho, \Omega_i) \\ \alpha_i \Phi_o(\rho, \Omega_i) \end{bmatrix} \Big|_{\alpha_i = 0}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Two-channel Generalisation

The hyperspherical two-channel boundary condition is

$$\frac{\partial}{\partial \alpha_i} \begin{bmatrix} \alpha_i \Phi_c(\rho, \Omega_i) \\ \alpha_i \Phi_o(\rho, \Omega_i) \end{bmatrix} \Big|_{\alpha_i = 0} = \frac{\rho}{\sqrt{\mu}} \begin{bmatrix} -\frac{1}{a_{i,c}} & \beta_i \\ \beta_i & -\frac{1}{a_{i,o}} \end{bmatrix} \begin{bmatrix} \alpha_i \Phi_c(\rho, \Omega_i) \\ \alpha_i \Phi_o(\rho, \Omega_i) \end{bmatrix} \Big|_{\alpha_i = 0}$$

yields

$$\frac{\rho^2 \beta^2}{\mu} \sin\left(\nu \frac{\pi}{2}\right) \sin\left(\tilde{\nu} \frac{\pi}{2}\right) - f_o(\nu) f_c(\tilde{\nu}) = 0$$

$$f_l(\nu) = \nu \cos\left(\nu \frac{\pi}{2}\right) - \frac{8}{\sqrt{3}} \sin\left(\nu \frac{\pi}{6}\right) - \frac{\rho}{\sqrt{\mu}} \frac{1}{a_l} \sin\left(\nu \frac{\pi}{2}\right), \quad l = o, c.$$

$$\frac{1}{a} \approx \frac{1}{a_o} + \frac{\beta^2}{\sqrt{\mu}\kappa - \frac{1}{a_c}} \qquad R = \frac{-\beta^2}{\sqrt{\mu}\kappa \left(\sqrt{\mu}\kappa - \frac{1}{a_c}\right)^2}$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 • のへ⊙

-Two-channel Zero Range model

Interpretation of Adiabatic Channels

Interpretation of Adiabatic Channels

-Two-channel Zero Range model

Interpretation of Adiabatic Channels

Interpretation of Adiabatic Channels

-Two-channel Zero Range model

Interpretation of Adiabatic Channels

Interpretation of Adiabatic Channels

$$\left(-\frac{d^{2}}{d\rho^{2}} + \frac{\nu_{n}^{2} - 1/4}{\rho^{2}} - Q_{nn}(\rho) - \frac{2mE}{\hbar^{2}}\right) f_{n}(\rho) = 0$$

$$\frac{\nu_{n}^{2} - \frac{1}{4}}{\rho^{2}} - \frac{1}{\mu a^{2}} \qquad n = 1$$

୍ର୍

-Two-channel Zero Range model

Interpretation of Adiabatic Channels

Interpretation of Adiabatic Channels

Two-channel Zero Range model

Analytical properties

Analytical properties

One- and two-channel model

$$u_0(
ho) \xrightarrow{
ho o \infty} rac{i
ho}{\sqrt{\mu}a}, \qquad
u_0(0) = 1.00624i$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

L Two-channel Zero Range model

Analytical properties

One- and two-channel model

$$u_0(
ho) \xrightarrow{
ho o \infty} rac{i
ho}{\sqrt{\mu}a}, \qquad
u_0(0) = 1.00624i$$

Effective range model

$$\nu_0 \xrightarrow{\rho \to \infty} \frac{i\rho}{\sqrt{\mu}a} \left(1 + \frac{R}{2a} \right) , \quad \nu_0 \xrightarrow{\rho \to 0} = i \sqrt{\frac{-1.81\rho}{\sqrt{\mu}R}}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

L Two-channel Zero Range model

Analytical properties

One- and two-channel model

$$u_0(
ho) \xrightarrow{
ho o \infty} rac{i
ho}{\sqrt{\mu}a}, \qquad
u_0(0) = 1.00624i$$

Effective range model

$$\nu_0 \xrightarrow{\rho \to \infty} \frac{i\rho}{\sqrt{\mu}a} \left(1 + \frac{R}{2a}\right) , \quad \nu_0 \xrightarrow{\rho \to 0} = i\sqrt{\frac{-1.81\rho}{\sqrt{\mu}R}}$$

For all models when $a
ightarrow \infty$

$$u_0(
ho)
ightarrow 1.00624i$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Two-channel Zero Range model Analytical properties

Analytical properties

One- and two-channel model

$$u_0(
ho) \xrightarrow{
ho o \infty} rac{i
ho}{\sqrt{\mu}a}, \qquad
u_0(0) = 1.00624i$$

Effective range model

$$\nu_0 \xrightarrow{\rho \to \infty} \frac{i\rho}{\sqrt{\mu}a} \left(1 + \frac{R}{2a}\right) , \quad \nu_0 \xrightarrow{\rho \to 0} = i\sqrt{\frac{-1.81\rho}{\sqrt{\mu}R}}$$

For all models when $a \to \infty$

$$\nu_0(\rho) \rightarrow 1.00624i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Efimov effect: $exp(\pi/1.00624) \approx 22.7$.

Two-channel Zero Range model

Radial potentials

Radial potentials

Two-channel Zero Range model

Radial potentials

Eigenvalue solution

The n = 0 adiabatic eigenvalue solutions.

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のんで

Two-channel Zero Range model

Radial potentials

Eigenvalue solution

The n = 1 adiabatic eigenvalue solutions.

Recombination is a three-body process in which

$$A + A + A \rightarrow A_2 + A$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Recombination is a three-body process in which

$$A + A + A \rightarrow A_2 + A$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Recombination is a three-body process in which

$$A + A + A \rightarrow A_2 + A$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

Recombination is a three-body process in which

$$A + A + A \rightarrow A_2 + A$$

The loss rate due to recombination is given by

$$\dot{n} = -\alpha n^3$$

where n is the particle density and α is denoted the recombination coefficient.

< 日 > < 同 > < 回 > < 回 > < 回 > <

ъ

The WKB tunneling probability is

$$T \approx e^{-2S}$$
 $iS = \frac{1}{\hbar} \int_{x_a}^{x_b} \sqrt{2m(E - V(x))} dx$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

The WKB-approximation

The WKB tunneling probability is

Recombination

Hidden Crossing Theory

Hidden Crossing

Recombination

Hidden Crossing Theory

Hidden Crossing

Transition probability

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

The phase Δ gives rise to interference effects.

Recombination

Hidden Crossing Theory

Recombination coefficient

The regularisation cut-off is chosen such that the recombination minimum at a_2^* is the same for all models.

Recombination

Hidden Crossing Theory

Recombination coefficient

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Recombination

Hidden Crossing Theory

Recombination coefficient for ⁷Li

Data from Hullet et al, Science, 326, (2009)

Simple models with effective range were introduced

- Simple models with effective range were introduced
- Feshbach physics was intimately linked to one of the models

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- Simple models with effective range were introduced
- Feshbach physics was intimately linked to one of the models

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Effective range effects in hyperangular momentum barrier

Conclusion

- Simple models with effective range were introduced
- Feshbach physics was intimately linked to one of the models
- Effective range effects in hyperangular momentum barrier
- Recombination via hidden crossing and further effective range effects

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Next Steps

How to deal with N > 3

$$\frac{\rho}{\sqrt{\mu}}\frac{1}{a} = \frac{\nu\cos\left(\nu\frac{\pi}{2}\right) - \frac{8}{\sqrt{3}}\sin\left(\nu\frac{\pi}{6}\right)}{\sin\left(\nu\frac{\pi}{2}\right)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Next Steps

How to deal with N > 3

$$\frac{\rho}{\sqrt{\mu}}\frac{1}{a} = \frac{\nu\cos\left(\nu\frac{\pi}{2}\right) - \frac{8}{\sqrt{3}}\sin\left(\nu\frac{\pi}{6}\right)}{\sin\left(\nu\frac{\pi}{2}\right)}$$

Eigenvalue equation becomes:

$$\frac{\rho}{\sqrt{\mu}a} = T_{12} + T_{13} + T_{34}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Next Steps

How to deal with N > 3

$$\frac{\rho}{\sqrt{\mu}}\frac{1}{a} = \frac{\nu\cos\left(\nu\frac{\pi}{2}\right) - \frac{8}{\sqrt{3}}\sin\left(\nu\frac{\pi}{6}\right)}{\sin\left(\nu\frac{\pi}{2}\right)}$$

Eigenvalue equation becomes:

$$\frac{\rho}{\sqrt{\mu}a} = T_{12} + T_{13} + T_{34}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Again solve for $\nu(rho)$ and apply hidden crossing method.