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Motivations

The fully understanding of the non perturbative regime of Quantum
ChromoDynamics, the present theory of the strong interactions, still
represents a paramount challenge. The perturbative regime, with its
fundamental feature, the asymptotic freedom, has been
experimentally investigated in great detail, and this has allowed us to
access the short-distances behavior of the hadronic wave functions.

Recently, it has been recognized that a wealth of information on the
partonic structure of hadrons is encoded in the Generalized Parton
Distributions and the Transverse-momentum Distributions, as well.
Those observables, that yield probability distributions of finding the
constituents with given momenta in the father-hadron involved in
both elastic and inelastic reactions, can be the pivotal quantities for
investigating both from the theoretical and experimental sides the
hadronic states. Presently, extensive theoretical and experimental
(DVCS & SIDIS) research programs are being pursued to gain
information on both GPD’s and TMD’s .

Goals: 1) a unified description of the observables through the
Bethe-Salpeter Amplitudes of hadrons, or equivalently through the
Light-Front wave functions (≡Fock expansion of the hadronic
state); ii) paving the way from the purely phenomenological
microscopic description to the one with a more consistent dynamical
content.
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Our present research program is based on

• first modeling the 4D quark-hadron vertex, namely the
Bethe-Salpeter amplitude that, in Quantum Field Theory, plays,
loosely speaking, the same role as the wave function in the non
relativistic QM;

• then giving a phenomenological description of the observables
(as many as possible) either i) experimentally investigated with
electromagnetic probes or ii) evaluated within the Lattice QCD
framework. The 4D Mandelstam formula of the current
operator for a composed system is our primary tool.

Our study starts with the ”simplest” hadronic system: the charged
Pion (ud̄ or ūd in the valence component).

Fock decomposition of the pion state

|π〉 = |qq̄〉︸︷︷︸+ |qq̄ qq̄〉+ |qq̄ g〉︸ ︷︷ ︸ .....
valence nonvalence

The next step will be an increasing of the dynamical content in the
adopted Bethe-Salpeter amplitude. This goal will achieved by
introducing an approach for approximating the solutions of the
Bethe-Salpeter equation in Minkowski space (that recently is
attracting great interest): the Nakanishi Perturbation Theory Integral
Representation (in collaboration with T. Frederico and M. Viviani)
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A primer on the Bethe-Salpeter Amplitude for

a two-body systems

The BS amplitude is defined by the following matrix element of the
time ordered product of two Heisenberg operators

Φ(xµ1 , x
µ
2 , p

µ) = 〈0|T {ϕH(xµ1 )ϕH(xµ2 )} |p〉.

where 〈0| is the vacuum and |p〉 a state of the interacting system,
with mass p2 = M2

The conjugate BS amplitude is

Φ̄(xµ1 , x
µ
2 , p

µ) = 〈p|T
{
ϕ†H(xµ1 )ϕ†H(xµ2 )

}
|0〉

Translational invariance imposes to Φ the following form

Φ(x1, x2, p) = Φ̃(x, p) e−ip·X ,

where Xµ = (xµ1 + xµ2 )/2, xµ = xµ1 − x
µ
2 and Φ̂(x, p) the reduced

amplitude.

Its Fourier transform, Φ(k, p), as follows

Φ(k, p) =

∫
d4x

(2π)4
e−ik·x Φ̂(x, p)

where

pµ = pµ1 + pµ2 kµ =
pµ1 − p

µ
2

2

with p2
i 6= m2
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The vertex function, introduced for eliminating a trivial
free-propagation, is defined in terms of the BS amplitude as

Γ(k, p) =
[
G12

0 (k, p)
]−1

Φ(k, p)

where

G
(12)
0 (k, p) = G

(1)
0 G

(2)
0 =

=
i

( p
2

+ k)2 −m2 + iε

i

( p
2
− k)2 −m2 + iε

.

with G(i)
0 the free propagators for the two constituents (no

self-energy insertions).

The amplitude Φ satisfies a homogeneous BS equation for a bound
state, or a inhomogeneous BS equation for the scattering case.

The BSE for bound states can be obtained from the analysis of the
four-point interacting Green function near the poles, e.g.

G(12)(x1, x2, y1, y2) =

= 〈0|T
{
ϕH(xµ1 )ϕH(xµ2 )ϕ†H(yµ1 )ϕ†H(yµ2 )

}
|0〉 =

= i
Φ(xµ1 , x

µ
2 , p

µ)Φ̄(yµ1 , y
µ
2 , p

µ)

p2 −M2 = iε
+R

and the equation that yields G12, while the BSE for scattering states
comes from the half-off-shell Green function with its cuts

6



For a bound state one has the following homogeneous integral
equation

Φb(k, p) = G
(12)
0 (k, p)

∫
d4k′

(2π)4
i K(k, k′, p)Φb(k

′, p),

where i K is the interaction kernel, containing irreducible diagrams
only, but with self-energy insertions and vertex correction. A
simplified picture is

i K ≡

N.B.: all the internal propagators and the interaction vertexes must
be dressed.

The normalization reads∫
d4k′

(2π)4

∫
d4k′

(2π)4
Φ̄b(k

′, p)
∂

∂pµ[
G0(k, p)−1(2π)2δ4(k′ − k)− iK(k′, k, p)

]
Φ(k, p) = 2ipµ
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The inhomogeneous BSE, i.e. the field theoretic counter-part of the
Lippman-Schwinger equation, is

Φ(+)(k, p, ki) = (2π)4δ(4)(k − ki) +

+G
(12)
0 (k, p)

∫
d4k′

(2π)4
i K(k, k′, p)Φ(+)(k′, p, ki)

where ki the relative incoming momentum.

Attempts to solve BSE: only for bound states, primarily

Shortly

• Wick rotation: from Minkowski space to Euclidean space,
namely k0 → ik0

• Quasipotential reduction: 4D→ 3D, with suitable prescriptions
for dealing with the analytic dependence of Φ upon k0, the
relative energy, conjugated to the relative time

• Nakanishi representation of the vertex function (from the
parametric form of the Feynman diagrams): 4D solutions,
(Kusaka et al, PRD56 (1997); Carbonell and Karmanov,
Few-body Syst. 49 (2011), for a review of their recent work.
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Probing the hadron dynamics through

electromagnetic observables

Elastic reaction

γ∗(q) +A(pi)→ A(pf )

〈pf |Jµ(x)|pi〉 → elastic form factors

Elastic form factors depend upon (pf − pi)2 = q2

Compton scattering in the Deep Inelastic regime

γ∗(q) +A(pi)→ A(pf ) + γ∗(q′)

〈pf |T{Jµ(x) Jν(0)}|pi〉 → Generalized Parton Distributions

Generalized Parton Distributions depend (pf − pi)2 6= q2,
(pf − pi) · n̂/(pf + pi) · n̂ and kqrk · n̂/(pf + pi) · n̂

Proper integration of GPD’s (first moment of GPD’s) yield elastic
FF’s
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The Mandelstam Formula for the EM current

for an interacting system

Our guidance⇒ the Mandelstam formula, that yields a covariant
expression of the matrix elements of the electromagnetic current for
hadrons.

A first application ⇒ Pion
In the spacelike region one has

〈pf |Jµ(0)|pi〉 = − ı2em
2

f2
π

Nc

∫
d4k

(2π)4
Λπ(k + q, P ′π) ×

Λπ(k, Pπ) Tr[S(k − Pπ) γ5S(k + q) Γµ(k, q) S(k) γ5]

• S(p) =
1

/p−m+ ıε
is the constituent quark propagator

• γ5 Λπ(k, Pπ) = [S(k − Pπ)]−1Φπ(k, Pπ)[S(k)]−1 is the
pion vertex function (known caveats...);

• Γµ(k, q) is the quark-photon vertex (qµ the virtual photon
momentum)→ γµ

Challenge: How to perform the 4D integration, in presence of poles
(see, e.g. the Dirac propagators) or much more complicated analytic
structures ( see, e.g. Λ) ?

10



Living on the Light-front hyperplane

A typical denominator in a Feynman diagram

k2
0 − k2

z − k2
⊥ −m2 + iε =

= (k0 −
√
m2 + k2

z + k2
⊥ + iε) (k0 +

√
k2
z + k2

⊥ − iε)

This leads to deal with two poles in the plane {<(k0),=(k0)}

A minimalist view of the issue
A simple change of variable leads to a different treatment of the
analytic integration

k± = k0 ± kz

Then

k2
0 − k2

z − k2
⊥ −m2 + iε =

= k+

(
k−

m2 + k2
⊥

k+

)
+ iε

Namely, one ends up with poles relative to different variables, k+

and k−
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Indeed, the previous change of variables is very far-reaching.

Dirac (1949) explored the consequences within a Hamiltonian
framework

He introduced the so-called Light-front Hamiltonian Dynamics,
opening a new avenue in the description of relativistically (Poincaré
covariant) interacting system, with a fixed number of particles.

In particular, it was turned out that the LF-boosts (combinations of
standard boosts and transverse rotations) are not affected by the
interaction. This substantially simplifies the description of reactions,
where the final state has to be boosted.

The application to Quantum Field Theory (infinite degrees of
freedom) has been equally fruitful. The operator P+ is bound from
below. Its spectrum is positive defined P+ ≥ 0. and this leads to an
almost trivial vacuum. Indeed, in a theory with only massive
particles, the vacuum is trivial: it is an empty vacuum.

In view of this, within a Light-front approach with massive particles,
the Fock expansion of a state of an interacting system becomes
meaningful, since the Fock states are constructed acting on the true
vacuum.
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Pion Vector Generalized Parton Distributions

Isoscalar and isovector pion GPD’s in the light-cone gauge are

H0
π(x, ξ, t) =

∫
dz−

4π
eixP

+z− 〈p′| ψ̄q(−
z

2
) γ+ψq(

z

2
)|p〉
∣∣∣
z̃=0

H1
π(x, ξ, t) =

∫
dz−

4π
eixP

+z− 〈p′|ψ̄q(−
z

2
) γ+τ3 ψq(

z

2
)|p〉
∣∣∣
z̃=0

z̃ ≡ {z+ = z0 + z3,z⊥}, ψq(z) = quark field isodoublet∫ 1

−1

dxHI=1(x, ξ, t) = Fπ(t)

Pion Tensor Generalized Parton Distributions

P+∆j − P j∆+

P+mπ
EI=0
π,T (x, ξ, t) =

∫
dz−

2π
eixP

+z−〈p′|ψ̄q(−
1

2
z)iσ+jψq(

1

2
z)|p〉

∣∣∣
z̃=0

P+∆j − P j∆+

P+mπ
EI=1
π,T (x, ξ, t) =

∫
dz−

2π
eixP

+z−〈p′|ψ̄q(−
1

2
z)iσ+jτ3ψq(

1

2
z)|p〉

∣∣∣
z̃=0

They allow us to investigate the correlation between the quark
polarization and its transverse momentum: tomography of the pion
state ! 13



Diagrammatic picture of Deep Virtual Compton Scattering

For large value of the virtual photon four-momentum, the two
electromagnetic vertexes, formally, shrink to one.....

t = ∆2 ∆ = p′ − p

ξ = − ∆+

2 P+ 2P = p+ p′

x = k+

P+ (1 ≥ x ≥ −1) �
∆

p = P − ∆
2p′ = P + ∆

2

k − P

k + ∆
2 k − ∆

2

LF time-ordered analysis of the pion GPD

�
∆

p = P − ∆
2p′ = P + ∆

2

k − P

k + ∆
2 k − ∆

2

(a)

�
∆

p = P − ∆
2p′ = P + ∆

2

k − P

k + ∆
2

k − ∆
2

(b)

active-quark valence region [DGLAP] nonvalence region [ERBL]
1 ≥ x ≥ |ξ| |ξ| > x > −|ξ|

diagonal in the Fock space non diagonal in the Fock space
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Mellin Moments

for Hu = H0 +H1 and EuT = E0
T + E1

T

∫ 1

−1

dxxnHu(x, ξ, t) =

n∑
i=0

(2ξ)iAn+1,i(t)

∫ 1

−1

dxxnEuT (x, ξ, t) =

n∑
i=0

(2ξ)iBn+1,i(t)

An+1,i(t) and Bn+1,i(t) are isoscalar Generalized Form Factors if
n is odd, and isovector GFF if n is even.

Those quantities are relevant for a comparison with Lattice QCD
calculations.
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Analytic covariant pion model with symmetric regulators

We use a pion Bethe-Salpeter amplitude (BSA) suggested by an
effective Lagrangian [Frederico, Miller, PRD 45 (1992) 4207]

Ψ(k − P, p) = −m
fπ

S (k −∆/2) γ5 Λ(k − P, p) S (k − P )

m = 220 MeV quark mass fπ = 92.4 MeV decay constant

Two covariant symmetric forms for Λ(k − P, p) are used :
i) a sum form

Λ1 =
C1[

(k −∆/2)2 −m2
R + ıε

] +
C1[

(P − k)2 −m2
R + ıε

]
ii) a product form

Λ2 =
C2[

(k −∆/2)2 −m2
R + ıε

] [
(P − k)2 −m2

R + ıε
]

The parameter mR (the only parameter we used) is fixed by
reproducing fπ :

mR = 600MeV sum form

mR = 1200MeV product form

The constants C1, C2 are fixed through the FF normalization :
Fπ(t = 0) = 1.
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The formal expression for the u-quark vector GPD is given in
Impulse Approximation (Mandelstam formula) by

2 Hu(x, ξ, t) = −ı Nc R ×∫
d4k

(2π)4
δ[P+x− k+] V + Λ(k − P, p′) Λ(k − P, p)

V + = Tr
{
S (k − P ) γ5 S (k + ∆/2) γ+ S (k −∆/2) γ5}

and the u-quark tensor GPD by

P+∆j − P j∆+

iNc R P+mπ
EuT (x, ξ, t) =

∫
d4k

(2π)4
δ[P+x− k+] Λ(k − P, p′)

Tr[S(k − P )γ5S(k + ∆/2)γ+γjS(k −∆/2)γ5] Λ(k − P, p)

Nc = 3 is the number of colors R = 2m2/f2
π

The δ function imposes the active quark support −|ξ| ≤ x ≤ 1
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Pion form factor

∫ 1

−1

dxHI=1(x, ξ, t) = Fπ(t)

0.01 0.1 1 10

-t  (GeV/c)
2

0.4

0.6

0.8

1

1.2

F
π(t

)/
F m

on
(t

)

Thin dashed line: covariant model, with the sum-form for BSA
Dotted line: covariant model, with the product-form BSA

Blue line and Red line: monopole and faster than monopole fit to
Lattice data [Brommel et al., Eur. Phys. J. C51 (2007) 335]
Thick dashed line: Light-Front Hamiltonian dynamics (fixed
number of d.o.f.) model with a Gaussian pion wave function.

Fmon(t) = 1/(1 + |t|/m2
ρ) mρ = 770 MeV

Models with an asymptotic decay slower than Fmon(t), as the
covariant sum-form model, yield a divergent charge density at short
range.
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Pion longitudinal momentum distribution

From Deep Inelastic Scattering
u(x) = Hu(x, 0, 0) = 2 HI=1(x, 0, 0)

u(x) =

∫
dk⊥ f1(x, |k⊥|2), (x ≥ 0) .

At ξ = 0 the variable x coincides with the longitudinal fraction xq

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

H
I=

1 (x
,0

,0
) 

 

Thin dashed line: covariant model with the sum-form BSA
Dotted line: covariant model with the product-form BSA
Thick dashed line: LFHD model with a Gaussian wave function

Sum-form BSA is unable to yield vanishing values at the end points.

The covariant product-form model with a |k⊥|4 decay of the BSA,
compatible with a BSE kernel dominated by the one-gluon-
exchange (OGE), gives a consistent description of the tail of the
form factor and of the end-point fall-off of the parton distribution.

Both at − t→∞ and at x→ 0 or at x→ 1 the high
momentum part of the pion state is probed.
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Transverse-momentum dependent function, f1(x, |k⊥|2)

covariant symmetric model
sum-form BSA product-form BSA

k 
perp (GeV/c) x

f1(x,kperp)/G(kperp)  (GeV/c)-2

k 
perp (GeV/c) x

f1(x,kperp)/G(kperp)  (GeV/c)-2

G(|k⊥|) = 1/(1 + |k⊥|2/m2
ρ)

4 kperp = |k⊥|

The normalization is given by
∫ 1

0
dx
∫
dk⊥ f1(x, |k⊥|2) = 1

The product-form model has a faster |k⊥| falloff than the sum-form
model.
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Vector Generalized Parton Distributions ξ = 0

Isoscalar Isovector

covariant symmetric model (product-form BSA)

t (
G

eV
/c

)2

x

Hπ
I=0(x,ξ=0,t)/Fmon(t)

t (
G

eV
/c

)2

x

Hπ
I=1(x,ξ=0,t)/Fmon(t)

ξ = 0 ⇒ valence region

As already noticed, as −t → ∞, the maximum of GPD’s moves
from x = 0.5 towards x = 1 .
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Isovector Generalized Parton Distributions |ξ| = x, mπ = 0

At |ξ| = x one explores the transition from valence to non valence
region. This kinematical regime should be relevant to study single
spin asymmetry [Diehl, Phys.Rep. 388 (2003) 41].

covariant symmetric model (product form BSA)

t (
G

eV
/c

)2

x

Hπ
I=1(x,|ξ|=x,t)/Fmon(t)

N.B. |t| → ∞, the maximum of GPD moves from
x = 0.5 → x = 1 .

. A similar analysis can be performed for the Tensor GPD
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Generalized Form Factors

Vector isoscalar GFF AI=0
2,0 and AI=0

2,2

0 1 2 3 4
-t  (GeV/c)

2

0

0.2

0.4

0.6

0.8

1
A

I=
0 (2

,0
)(t

) 
/A

I=
0 (2

,0
)(0

)

0 1 2 3 4
-t  (GeV/c)

2

0

0.2

0.4

0.6

0.8

1

A
I=

0

(2
,2

)(t
) 

 / 
 A

I=
0

(2
,2

)(0
) 

Solid, dashed and dotted lines : our model results with no evolution

Shaded area : Lattice results extrapolated at the physical pion mass
and evaluated at an energy scale µ = 2 GeV [Brommel et al. Phys.
Rev. Lett. 101 (2008) 122001].

Ratio A(t)/A(0) has been reported to get rid of the multiplicative
effect of evolution [Broniowsky, Phys. Rev. D 82 (2010) 094001]
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From Tensor GPD’s
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Impact Parameter Space

To get a density distribution of polarized quarks in the IPS, the
Fourier Transform of the GFF is needed:

An(b⊥) =

∫
d~∆⊥e

i~∆⊥·~b⊥An,0(∆2)

Bn(b⊥) =

∫
d~∆⊥e

i~∆⊥·~b⊥Bn,0(∆2)

An(b⊥) yields the GFF in the IPS, and represents the probability
density of finding an unpolarized parton in the pion at a certain
distance b⊥ from the transverse center of mass.

The probability density of finding a parton of a fixed transverse
polarization, ~s, at a certain distance~b⊥ from the transverse center of
mass is given by

ρn(~b⊥, ~s) =
1

2

[
An(b⊥) +

siεijbj

b⊥
Γn(b⊥)

]
where

Γn(b⊥) = − 1

2mπ

∂ Bn(b⊥)

∂ b⊥
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ρ1(~b, sx̂)

Figure 4.17: Tridimensional representation of the probability density ρn for polarized quarks in
the transverse plane of the Impact Parameter Space, for n = 1 (upper panel) and n = 2 (lower
panel).

52
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ρ2(~b, sx̂)

Figure 4.17: Tridimensional representation of the probability density ρn for polarized quarks in
the transverse plane of the Impact Parameter Space, for n = 1 (upper panel) and n = 2 (lower
panel).

52
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The next step:

the Nakanishi representation of BSA

The successful description of the em observables of the pion, though
not too much compelling with respect to other approaches, seems to
suggests, within our approach, that the product-form of the
Bethe-Salpeter amplitude is phenomenologically more effective.

The product form of the momentum part of the vertex function can
be rewritten as

Λ =
C[(

p
2

+ k
)2 −m2

R + ıε
] [(

p
2
− k
)2 −m2

R + ıε
] =

=

∫ 1

−1

dz

∫ ∞
−∞

dγ′
δ(γ′ −m2

R +m2)

[γ′ + k2 + zk · p− κ2 + iε]2

with

κ2 = m2 − m2
π

4
≥ 0

This strongly suggests to resort to the Nakanishi integral
representation of the Bethe-Salpeter Amplitude, based on the
parametric form of the Feynman diagrams.

Nakanishi pointed out that the analytical behavior of each Feynman
diagram (namely the denominator) can be put in the same, general
form, through a smart change of variables (once more a change of
variables!). This allowed him to give the general form of any
multi-leg amplitude (two-leg vertex function, four-leg T-matrix, etc.)
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For a simple, two-boson system interacting through the exchange of
a boson (all massive), the vertex function (bound state) can be
written within the Nakanishi integral representation as

Γb(k, p) =

∫ 1

−1

dz

∫ ∞
−∞

dγ′
g(γ′, z)

[γ′ + k2 + zk · p− κ2 + iε]n

where the real function g(γ′, z) is the Nakanishi amplitude and
n ≥ 1. This expression can be seen as the result of an infinite sum
of Feynman diagrams, all with the same denominator, after
introducing the Nakanishi change of variables.

Once we have singled out the explicit analytic behavior, as already
said, the Light-front formalism allows one to perform analytical
integration in a very effective way. Then, one can find the integral
equation to be fulfilled by the Nakanishi amplitude directly from the
BS equation, where the kernel is given at some approximation order:
ladder, cross-ladder etc. (J. Carbonell, V. Karmanov, EPJA 2006;
EPJA 2011)

i K ≡

29



For the two-boson case, one has∫ ∞
0

dγ′
gb(γ

′, z)

[γ′ + γ + z2m2 + (1− z2)κ2 − iε]2 =

=

∫ ∞
0

dγ′
∫ 1

−1

dz′ Vb(γ, z; γ
′, z′)gb(γ

′, z′).

where the kernel Vb, is related to the kernel iK in the BS equation,
as follows

Vb(γ, z; γ
′, z′) = ip+

∫ ∞
−∞

dk−

2π
G

(12)
0 (k, p) ×∫

d4k′

(2π)4

iK(k, k′, p)[
k′2 + p · k′z′ − γ′ − κ2 + iε

]3
The integral equation for the Nakanishi amplitude can be put in a
simpler form by using the uniqueness of the solution and
furthermore it can be extended to the scattering states (T. Frederico,
M. Viviani and G.S. in preparation)
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Conclusions & Perspectives

• A simple covariant constituent quark model for the pion
Bethe-Salpeter amplitude has been adopted for investigating
the pion observables, that can be studied both by means of
elastic electron scattering and DVCS. Moreover, beside the
Generalized Parton distributions, the generalized form factors,
more easily accessed by Lattice calculations, have been
evaluated.

• It has been shown the relevance of a q-π vertex compatible
with the OGE dominance, i.e. the product form, for describing
the tail of the form factor and for obtaining a vanishing parton
distribution at the end points.

• This phenomenological findings point to the application of a
more fundamental approach, based on the Nakanishi
representation of the BSA, and the consequent solutions of
simple integral equation with a clear dynamical content.
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