Beyond the Efimov effect

B.D. Esry Yujun Wang, Nicolais Guevara

Department of Physics Kansas State University

Critical Stability October 10, 2011

Efimov Effect

Efimov effect

Definition

Inelastic processes

Beyond Efimov

Separable

Non-separabl

?????? Effect

?????? vs Efimov

Deeply-bound two-body states

Other symmetries

Three bodies with short-range interactions can have an *infinity* of three-body bound states even when no two of them are bound, if $\frac{|a|}{r_0} \rightarrow \infty$

Ferlaino and Grimm, Physics **3**, 9 (2010) V. Efimov, Phys. Lett. B **33**, 563 (1970)

Efimov Effect

Efimov effect

Inelastic processes

Beyond Efimov Separable Non-separable ?????? Effect ?????? vs Efimov Deeply-bound two-body states Other symmetries Four-body Efimov? Three bodies with short-range interactions can have an *infinity* of three-body bound states even when no two of them are bound, if $\frac{|a|}{r_0} \to \infty$

Why? Adiabatic hyperspherical potential is

$$U = -\frac{s_0^2 + \frac{1}{4}}{2\mu R^2}, \qquad r_0 \ll R \ll |a|$$

Solutions are known analytically ...

 $s_0^2 \sim 1 > 0$ is supercritical, giving an infinity of states with

$$E_n = E_0 e^{-2\pi n/s_0}$$

Geometric spacing!

Efimov Effect

Efimov effect

Inelastic processes

Beyond Efimov Separable Non-separable ?????? Effect ?????? vs Efimov Deeply-bound two-body states Other symmetries Four-body Efimov? Three bodies with short-range interactions can have an *infinity* of three-body bound states even when no two of them are bound, if $\frac{|a|}{r_0} \to \infty$

Why? Adiabatic hyperspherical potential is

$$U = -\frac{s_0^2 + \frac{1}{4}}{2\mu R^2}, \qquad r_0 \ll R \ll |a|$$

Solutions are known analytically... $s_0^2 \sim 1 > 0$ is supercritical, giving an infinity of states with

$$E_n = E_0 e^{-2\pi n/s_0}$$

Geometric spacing!

Ultracold recombination

ct Why do we care?

• Efimov physics underlies all ultracold scattering, leaving imprint of Efimov states on ultracold observables

Recombination $B + B + B \longrightarrow B_2 + B$

• Universality allows us to derive analytic expressions for observables:

D'Incao, Suno, Esry, PRL (2004)

Efimov effect Definition Inelastic processes

Beyond Efimov Separable Non-separable ?????? Effect ?????? vs Efimov Deeply-bound two-body states Other symmetrie Enur-body Efimor

Efimov Effect

Efimov effect Definition Inelastic processes

Beyond Efimov Separable Non-separable ?????? Effect ?????? vs Efimov Deeply-bound two-body states Other symmetries Three bodies with short-range interactions can have an *infinity* of three-body bound states even when no two of them are bound, if $\frac{|a|}{r_0} \rightarrow \infty$

Ferlaino and Grimm, Physics **3**, 9 (2010) V. Efimov, Phys. Lett. B **33**, 563 (1970)

Efimov effect Definition Inelastic processes

Beyond Efimov

Separable Non-separable ?????? Effect ?????? vs Efimov Deeply-bound two-body states Other symmetries Four-body Efimor?

Efimov's effect addresses short-range two-body interactions.

Q: What about long-range two-body interactions?

A: We know long-range potentials (like Coulomb) have infinity of three-body states — but also infinity of two-body states

But, what about attractive r^{-2} potential...

Recall that for

$$v(r) = -\frac{\alpha^2 + \frac{1}{4}}{2\mu r^2}$$

 $\alpha^2 > 0$ supercritical ∞ of bound states $\alpha^2 \le 0$ subcritical no bound states

Efimov effect Definition Inelastic processes

Beyond Efimov

Separable Non-separable ?????? Effect ?????? vs Efimov Deeply-bound two-body states

Other symmetries

Efimov's effect addresses short-range two-body interactions.

Q: What about long-range two-body interactions?A: We know long-range potentials (like Coulomb) have infinity of three-body states — but also infinity of two-body states

But, what about attractive r^{-2} potential...

Recall that for

$$v(r) = -\frac{\alpha^2 + \frac{1}{4}}{2\mu r^2}$$

 $\alpha^2 > 0$ supercritical ∞ of bound states $\alpha^2 \le 0$ subcritical no bound states

Efimov effect Definition Inelastic processes

Beyond Efimov

Separable Non-separable ?????? Effect ?????? vs Efimov Deeply-bound two-body states Other symmetries Even body Eferor? Efimov's effect addresses short-range two-body interactions.

Q: What about long-range two-body interactions?A: We know long-range potentials (like Coulomb) have infinity of three-body states — but also infinity of two-body states

But, what about attractive r^{-2} potential...

```
Recall that for
```

$$v(r) = -\frac{\alpha^2 + \frac{1}{4}}{2\mu r^2}$$

 $\alpha^2 > 0$ supercritical ∞ of bound states $\alpha^2 \le 0$ subcritical no bound states

Efimov effect Definition Inelastic processes

Beyond Efimov

Separable Non-separable ?????? Effect ?????? vs Efimov Deeply-bound two-body states Other symmetries Four-body Efimon? Efimov's effect addresses short-range two-body interactions.

Q: What about long-range two-body interactions?A: We know long-range potentials (like Coulomb) have infinity of three-body states — but also infinity of two-body states

But, what about attractive r^{-2} potential...

```
Recall that for
```

$$v(r) = -\frac{\alpha^2 + \frac{1}{4}}{2\mu r^2}$$

 $\alpha^2 > 0$ supercritical ∞ of bound states $\alpha^2 \le 0$ subcritical no bound states

Efimov effect Definition Inelastic processes

Beyond Efimov

Separable

Non-separable ????? Effect

?????? vs Efime

Deeply-bound two-body states Other symmetrie

-Four-body Efimov?

The adiabatic hyperspherical equation

$$\left[\frac{\Lambda^2}{2\mu R^2} - \sum_{i < j} \frac{\alpha^2 + \frac{1}{4}}{2\mu_{ij}r_{ij}^2}\right] \Phi_v = U_v(R)\Phi_v$$

is separable, guaranteeing

$$U_{v}(R) = -\frac{\alpha_{v}^{2} + \frac{1}{4}}{2\mu R^{2}}$$

Q: Is *U* subcritical or supercritical when α^2 is *subcritical*?!

A: Supercritical, sort of... $\alpha_0^2 \rightarrow -\infty$! Three-body fall-to-the-center!

Efimov effect Definition Inelastic processes

Beyond Efimov

Separable

Non-separable

Deeply-bound two-body states Other symmetrie

The adiabatic hyperspherical equation

$$\left[\frac{\Lambda^2}{2\mu R^2} - \sum_{i < j} \frac{\alpha^2 + \frac{1}{4}}{2\mu_{ij}r_{ij}^2}\right] \Phi_v = U_v(R)\Phi_v$$

is separable, guaranteeing

$$U_{v}(R) = -\frac{\alpha_{v}^{2} + \frac{1}{4}}{2\mu R^{2}}$$

Q: Is *U* subcritical or supercritical when α^2 is *subcritical*?! **A**: Supercritical, sort of... $\alpha_0^2 \rightarrow -\infty$! Three-body fall-to-the-center!

Efimov effect Definition Inelastic processes

Beyond Efimov

Separable

Non-separable ?????? Effect ?????? vs Efime

Deeply-bound two-body states Other symmetrie

The adiabatic hyperspherical equation

$$\left[\frac{\Lambda^2}{2\mu R^2} - \sum_{i < j} \frac{\alpha^2 + \frac{1}{4}}{2\mu_{ij}r_{ij}^2}\right] \Phi_{\nu} = U_{\nu}(R)\Phi_{\nu}$$

is separable, guaranteeing

$$U_{v}(R) = -\frac{\alpha_{v}^{2} + \frac{1}{4}}{2\mu R^{2}}$$

Q: Is *U* subcritical or supercritical when α^2 is *subcritical*?! **A**: Supercritical, sort of... $\alpha_0^2 \rightarrow -\infty$! Three-body fall-to-the-center!

Efimov effect Definition Inelastic processes

Beyond Efimov Separable

Non-separable

222222 Férrer

Deeply-bound two-body states Other symmetrie

Four-body Efimov?

If it occurs in nature, then it will probably look more like

$$v(r) = -\frac{\alpha^2 + \frac{1}{4}}{2\mu r^2}, \qquad r \ge r_0$$

This "regularizes" the singularity, but also removes separability.

Empirically, for $J^{\pi}=0^+$ bosons with subcritical α^2

$$U_{\nu}(R) = -\frac{\sqrt{\beta \ln(R/r_0) + \delta}}{2\mu R^2}$$

But, this falls off slower than R^{-2} , still an infinity of states!

Efimov effect Definition Inelastic processes

Beyond Efimov _{Separable}

Non-separable

222222 vs Efimor

Deeply-bound two-body states Other symmetries

Four-body Efimov?

If it occurs in nature, then it will probably look more like

$$v(r) = -\frac{\alpha^2 + \frac{1}{4}}{2\mu r^2}, \qquad r \ge r_0$$

This "regularizes" the singularity, but also removes separability.

Empirically, for $J^{\pi}=0^+$ bosons with subcritical α^2

$$U_{\nu}(R) = -\frac{\sqrt{\beta \ln(R/r_0) + \delta}}{2\mu R^2}$$

But, this falls off slower than R^{-2} , still an infinity of states!

Efimov effect Definition Inelastic processes

Beyond Efimov _{Separable}

Non-separable

222222 vs Efimo

Deeply-bound two-body states Other symmetries

Four-body Efimov?

If it occurs in nature, then it will probably look more like

$$v(r) = -\frac{\alpha^2 + \frac{1}{4}}{2\mu r^2}, \qquad r \ge r_0$$

This "regularizes" the singularity, but also removes separability.

Empirically, for $J^{\pi}=0^+$ bosons with subcritical α^2

$$U_{\nu}(R) = -\frac{\sqrt{\beta \ln(R/r_0) + \delta}}{2\mu R^2}$$

But, this falls off slower than R^{-2} , still an infinity of states!

Efimov effect Definition Inelastic processes

Beyond Efimov

Separable

Non-separable

?????? Effect

Deeply-bound two-body states Other symmetries Let's compare...

Efimov Effect

Three bodies with short-range interactions can have an *infinity* of three-body bound states even when no two of them are bound, if $\frac{|a|}{r_0} \rightarrow \infty$

Efimov Effect

Three bodies with short-range interactions can have an *infinity* of three-body bound states even when no two of them are bound, if $\frac{|a|}{r_0} \rightarrow \infty$

Efimov effect Definition Inelastic processes

Beyond Efimov

Separable

Non-separable

?????? Effect

Deeply-bound two-body states Other symmetries

Let's compare...

Efimov Effect

Three bodies with short-range interactions can have an *infinity* of three-body bound states even when no two of them are bound, if $\frac{|a|}{r_0} \rightarrow \infty$

????? Effect

Three bodies with short-range interactions can have an *infinity* of three-body bound states even when no two of them are bound, if $\frac{|a|}{r_0} \rightarrow \infty$

Efimov effect Definition Inelastic processes

Beyond Efimov

Separable

Non-separable

?????? Effect

Deeply-bound two-body states Other symmetries Let's compare...

Efimov Effect

Three bodies with short-range interactions can have an *infinity* of three-body bound states even when no two of them are bound, if $\frac{|a|}{r_0} \rightarrow \infty$

????? Effect

Three bodies with long-range interactions can have an *infinity* of three-body bound states even when no two of them are bound, if $\frac{|a|}{r_0} \rightarrow \infty$

Efimov effect Definition Inelastic processes

Beyond Efimov

Separable

Non-separable

?????? Effect

Deeply-bound two-body states Other symmetries

Let's compare...

Efimov Effect

Three bodies with short-range interactions can have an *infinity* of three-body bound states even when no two of them are bound, if $\frac{|a|}{r_0} \rightarrow \infty$

????? Effect

Three bodies with long-range interactions can have an *infinity* of three-body bound states even when no two of them are bound, if $\alpha^2 \ge 0$

Efimov effect Definition Inelastic processes

Beyond Efimov

Separable

Non-separab

?????? vs Efim

Deeply-bound two-body states Other symmetric

Adiabatic hyperspherical potentials

$$U_{\nu}(R) = -\frac{\sqrt{\beta \ln(R/r_0) + \delta}}{2\mu R^2}$$

Three-body spectrum

$$E_{n+1}/E_n = \exp\left(-\frac{2\pi}{\left[(\beta \ln \frac{(R)_0}{r_0} - \frac{\beta}{2} \ln \frac{E_n}{E_0})^{1/2} - \frac{1}{4}\right]^{1/2}}\right)$$

Efimov effect Definition Inelastic processes

Beyond Efimov Separable

Separable

?????? Effect

?????? vs Efimov Deeply-bound

Other symmetries

Four-body Efimov?

$$U_{\nu} \to E_{\nu l} - \frac{\alpha_{\text{eff}}^2 + 1/4}{2\mu R^2}$$
 $\alpha_{\text{eff}}^2 = \frac{8}{3}\alpha^2 + \frac{5}{12} - \ell(\ell+1)$

 $\alpha_{\rm eff}^2$ always supercritical!

Efimov effect Definition Inelastic processes

Beyond Efimov Separable

separable

?????? Effect

?????? vs Efimov Deeply-bound

Other symmetries

$$U_{\nu} \to E_{\nu l} - \frac{\alpha_{\text{eff}}^2 + 1/4}{2\mu R^2} \qquad \alpha_{\text{eff}}^2 = \frac{8}{3}\alpha^2 + \frac{5}{12} - \ell(\ell+1)$$

 $\alpha_{\rm eff}^2$ always supercritical!

Efimov effect Definition Inelastic processes

Beyond Efimov Separable

Separable

?????? Effect

?????? vs Efimov Deeply-bound two-body states

Other symmetries

$$U_{\nu} \rightarrow E_{\nu l} - \frac{\alpha_{\text{eff}}^2 + 1/4}{2\mu R^2}$$
 $\alpha_{\text{eff}}^2 = \frac{8}{3}\alpha^2 + \frac{5}{12} - \ell(\ell+1)$

 $\alpha_{\rm eff}^2$ always supercritical!

Compare again...

Efimov effect Definition Inelastic processes

Beyond Efimov

Separable

Non-separab

????? Effect

?????? vs Efimov

Deeply-bound two-body states Other symmetrie Four-body Efimo

Ferlaino and Grimm, Physics 3, 9 (2010)

V. Efimov, Phys. Lett. B 33, 563 (1970)

Efimov effect Definition Inelastic processes

Beyond Efimov

Separable

Non-separabl

?????? Effect

Deeply-bound

two-body states

$$\alpha_D^2 = \frac{3}{8}\ell(\ell+1) - \frac{5}{32}$$

Efimov effect Definition Inelastic processes

Beyond Efimov Separable Non-separable ????? Effect ????? vs Efimov Deeply-bound two-body states

Other symmetries

our-body Efimov?

Effect exists for 0⁺ bosons, what else?

*N*e checked 1⁺ identical, spin-polarized fermions... No Efimov effect...

Consider effective two-body potential for $r \ge r_0$

$$v_{\rm eff}(r) = -\frac{\alpha^2 + \frac{1}{4}}{2\mu r^2} + \frac{\ell(\ell+1)}{2\mu r^2}$$

For identical fermions $\ell=1$, $\alpha^2=2$ is critical

Efimov effect Definition Inelastic processes

Beyond Efimov Separable Non-separable ????? Effect ????? vs Efimov Deeply-bound uso-body states

Other symmetries

Effect exists for 0⁺ bosons, what else?

We checked 1⁺ identical, spin-polarized fermions... No Efimov effect...

Consider effective two-body potential for $r \ge r_0$

$$v_{\rm eff}(r) = -\frac{\alpha^2 + \frac{1}{4}}{2\mu r^2} + \frac{\ell(\ell+1)}{2\mu r^2}$$

For identical fermions $\ell=1$, $\alpha^2=2$ is critical

Efimov effect Definition Inelastic processes

Beyond Efimov Separable Non-separable ????? Effect ????? vs Efimov Deeply-bound two-body states

Other symmetries

our-body Efimov?

Effect exists for 0⁺ bosons, what else?

We checked 1⁺ identical, spin-polarized fermions... No Efimov effect...

Consider effective two-body potential for $r \ge r_0$

$$v_{\text{eff}}(r) = -\frac{\alpha^2 + \frac{1}{4}}{2\mu r^2} + \frac{\ell(\ell+1)}{2\mu r^2}$$

For identical fermions $\ell=1$, $\alpha^2=2$ is critical

Efimov effect Definition Inelastic processes

Beyond Efimov Separable Non-separable ????? Effect ????? vs Efimov Deeply-bound two-body states Other symmetries

our-body Efimov?

Effect exists for 0⁺ bosons, what else?

We checked 1⁺ identical, spin-polarized fermions... No Efimov effect...

Consider effective two-body potential for $r \ge r_0$

$$v_{\text{eff}}(r) = -\frac{\alpha^2 + \frac{1}{4}}{2\mu r^2} + \frac{\ell(\ell+1)}{2\mu r^2}$$

For identical fermions $\ell = 1$, $\alpha^2 = 2$ is critical

Efimov effect Definition Inelastic processes

Beyond Efimov

Separable

Non-separabl

?????? Effect

?????? vs Efim

with

Deeply-bound two-body state:

Other symmetries

Four-body Efimov?

Solve for adiabatic hyperspherical potentials with $\alpha^2 \leq 2$, find empirically

$$U_0(R) \to -\frac{\alpha_{\rm eff}^2 + 1/4}{2\mu R^2} - \frac{\gamma}{2\mu \ln(R/r_0)R^2}$$
$$\alpha_{\rm eff}^2 = 5.24 \qquad \gamma = 4.19$$

?????? Effect for fermions

 $\alpha_{\rm eff}^2$ supercritical! An infinity of three-body 1⁺ fermion bound states with no two-body bound states

Effect persists down to $\alpha_c^2 = 1.6$, where

$$\nu_{\rm eff}(r) = -\frac{1.6 - 2 + \frac{1}{4}}{2\mu r^2} = +\frac{0.15}{2\mu r^2}$$

Efimov effect Definition Inelastic processes

Beyond Efimov

Separable

Non-separabl

?????? Effect

?????? vs Efime

with

Deepiy-bound two-body states

Other symmetries

Four-body Efimov?

Solve for adiabatic hyperspherical potentials with $\alpha^2 \leq 2$, find empirically

$$U_0(R) \to -\frac{\alpha_{\rm eff}^2 + 1/4}{2\mu R^2} - \frac{\gamma}{2\mu \ln(R/r_0)R^2}$$
$$\alpha_{\rm eff}^2 = 5.24 \qquad \gamma = 4.19$$

????? Effect for fermions

 $\alpha_{\rm eff}^2$ supercritical! An infinity of three-body 1⁺ fermion bound states with no two-body bound states

Effect persists down to $\alpha_c^2 = 1.6$, where

$$v_{\rm eff}(r) = -\frac{1.6 - 2 + \frac{1}{4}}{2\mu r^2} = +\frac{0.15}{2\mu r^2}!$$

Efimov effect Definition Inelastic processes

Beyond Efimov

Separable

Non-separabl

?????? Effect

?????? vs Efime

with

two-body states

Other symmetries

Four-body Efimov?

Solve for adiabatic hyperspherical potentials with $\alpha^2 \leq 2$, find empirically

$$U_0(R) \to -\frac{\alpha_{\rm eff}^2 + 1/4}{2\mu R^2} - \frac{\gamma}{2\mu \ln(R/r_0)R^2}$$
$$\alpha_{\rm eff}^2 = 5.24 \qquad \gamma = 4.19$$

?????? Effect for fermions

 $\alpha_{\rm eff}^2$ supercritical! An infinity of three-body 1⁺ fermion bound states with no two-body bound states

Effect persists down to $\alpha_c^2 = 1.6$, where

$$v_{\rm eff}(r) = -\frac{1.6 - 2 + \frac{1}{4}}{2\mu r^2} = +\frac{0.15}{2\mu r^2}!$$

PRL 105, 223201 (2010) PHYSICAL REVIEW LETTERS

Four-Body Efimov Effect for Three Fermions and a Lighter Particle

Yvan Castin,1 Christophe Mora,2 and Ludovic Pricoupenko3

Found that for 1⁺ *FFFX* and $a_{FX} = \infty$, there is an Efimov effect for 13.384 $\leq m_F/m_X \leq$ 13.607:

$$U_0(R) = -\frac{s^2 + 1/4}{2\mu R^2}$$

Efimov effect Definition Inelastic processes

Beyond Efimov Separable Non-separable ????? Effect ????? vs Efimoo Deeply-bound two-body states

Four-body Efimov?

Efimov effect Definition Inelastic processes

Beyond Efimov Separable Non-separable ?????? Effect ?????? vs Efimo Deeply-bound two-body states

Four-body Efimov?

Four-body ????? Effect

How does this relate to our three-body effect?!

Consider *FFFX* with $m_F \gg m_X$. Can approximately solve using Born-Oppenheimer:

- Integrate out light particle (*X*) motion
- Produces effective potential for heavy particle (F) motion
- Reduces problem to three-body: FFF!

For simplicity, approximate *FFF* Born-Oppenheimer surface with pairwise sum of *FFX* potentials... which are, for $a_{FX} = \infty$, Efimov potentials:

$$v_{F+F}(r) = -\frac{p_0^2 + 1/4}{2\mu r^2}$$
$$= -\frac{\alpha^2 + 1/4}{2\mu r^2} + \frac{\ell(\ell+1)}{2\mu r^2}$$

Efimov effect Definition Inelastic processes

Beyond Efimov Separable Non-separable ?????? Effect ?????? vs Efimov Deeply-bound

wo-body state

Four-body Efimov?

Four-body ????? Effect

How does this relate to our three-body effect?!

Consider *FFFX* with $m_F \gg m_X$. Can approximately solve using Born-Oppenheimer:

- Integrate out light particle (X) motion
- Produces effective potential for heavy particle (F) motion
- Reduces problem to three-body: FFF!

For simplicity, approximate *FFF* Born-Oppenheimer surface with pairwise sum of *FFX* potentials... which are, for $a_{FX} = \infty$, Efimov potentials:

$$v_{F+F}(r) = -\frac{p_0^2 + 1/4}{2\mu r^2}$$
$$= -\frac{\alpha^2 + 1/4}{2\mu r^2} + \frac{\ell(\ell+1)}{2\mu r^2}$$

Efimov effect Definition Inelastic processes

Beyond Efimov Separable Non-separable ?????? Effect ?????? vs Efimov Deeply-bound two-body states

Four-body Efimov?

Four-body ?????? Effect

How does this relate to our three-body effect?!

Consider *FFFX* with $m_F \gg m_X$. Can approximately solve using Born-Oppenheimer:

- Integrate out light particle (X) motion
- Produces effective potential for heavy particle (F) motion
- Reduces problem to three-body: FFF!

For simplicity, approximate *FFF* Born-Oppenheimer surface with pairwise sum of *FFX* potentials... which are, for $a_{FX} = \infty$, Efimov potentials:

$$v_{F+F}(r) = -\frac{p_0^2 + 1/4}{2\mu r^2}$$
$$= -\frac{\alpha^2 + 1/4}{2\mu r^2} + \frac{\ell(\ell+1)}{2\mu r^2}$$

Efimov effect Definition Inelastic processes

Beyond Efimov _{Separable}

Non-separabl

222222 vs Efimo

Deeply-bound

Other man

Four-body Efimov?

This is exactly our three-body fermion effect! We thus know

$$U_0(R) \rightarrow -\frac{\alpha_{\text{eff}}^2 + 1/4}{2\mu R^2} - \frac{\gamma}{2\mu \ln(R/r_0)R^2}$$

We found an infinity of three-body states for

 $1.6 \le \alpha^2 \le 2$

corresponding to

 $11.58 \le m_F/m_X \le 13.607$ $(13.384 \le m_F/m_X \le 13.607)$

Four-body ????? Effect

We thus argue that the *FFFX* states are better labeled ????? states than Efimov states

Efimov effect Definition Inelastic processes

Beyond Efimov _{Separable}

Non-separabl

222222 vs Efimo

Deeply-bound

Other symmetry

Four-body Efimov?

This is exactly our three-body fermion effect! We thus know

$$U_0(R) \rightarrow -\frac{\alpha_{\text{eff}}^2 + 1/4}{2\mu R^2} - \frac{\gamma}{2\mu \ln(R/r_0)R^2}$$

We found an infinity of three-body states for

 $1.6 \le \alpha^2 \le 2$

corresponding to

 $11.58 \le m_F/m_X \le 13.607$ $(13.384 \le m_F/m_X \le 13.607)$

Four-body ????? Effect

We thus argue that the *FFFX* states are better labeled ????? states than Efimov states

Efimov effect Definition Inelastic processes

Beyond Efimov Separable Non-separable ?????? Effect ?????? vs Efimov Deeply-bound two-body states Other symmetries

Four-body Efimov?

This is exactly our three-body fermion effect! We thus know

$$U_0(R) \rightarrow -rac{lpha_{
m eff}^2 + 1/4}{2\mu R^2} - rac{\gamma}{2\mu \ln(R/r_0)R^2}$$

We found an infinity of three-body states for

 $1.6 \le \alpha^2 \le 2$

corresponding to

 $\begin{array}{l} 11.58 \leq \! m_F/m_X \leq 13.607 \\ (13.384 \leq \! m_F/m_X \leq 13.607) \end{array}$

Four-body ????? Effect

We thus argue that the *FFFX* states are better labeled ?????? states than Efimov states

Efimov effect Definition Inelastic processes

Beyond Efimov Separable Non-separable ?????? Effect ?????? vs Efimov Deeply-bound two-body states Other symmetries

Four-body Efimov?

This is exactly our three-body fermion effect! We thus know

$$U_0(R) \to -\frac{\alpha_{\rm eff}^2 + 1/4}{2\mu R^2} - \frac{\gamma}{2\mu \ln(R/r_0)R^2}$$

We found an infinity of three-body states for

 $1.6 \le \alpha^2 \le 2$

corresponding to

 $\begin{array}{l} 11.58 \leq \! m_F/m_X \leq 13.607 \\ (13.384 \leq \! m_F/m_X \leq 13.607) \end{array}$

Four-body ????? Effect

We thus argue that the *FFFX* states are better labeled ?????? states than Efimov states

Summary

Efimov effect Definition Inelastic processes

Beyond Efimov Separable Non-separable ?????? Effect ?????? vs Efimov Deeply-bound two-body states Other symmetries Four-body Efimov?

- We have identified an effect that gives an infinity of three-body bound states in the absence of any two-body bound states that is *not* the Efimov effect
- There are an infinity of such states even in the presence of two-body bound states
- Curious new "fall-to-the-center" problem
- Many other interesting questions to explore with these systems!
- "A new class of three-body states," N. Guevara, Y. Wang, and B.D. Esry, arXiv:1110.0476