Tunable Wigner states with dipolar atoms and molecules

Jonas C. Cremon

G. M. Bruun

S. M. Reimann

Division of Mathematical Physics, LTH Lund University, Sweden

Wigner localization

 Particle localization induced by long-range repulsive interactions

Quantum mechanical particles prefer to spread out as much as possible to minimize kinetic energy.

But sufficiently strong long-range repulsive interactions may cause particles to localize at individual positions.

Electrostatic Coulomb interaction between ions:

$$V(\mathbf{r}_1, \mathbf{r}_2) = \frac{e^2}{4\pi\epsilon_0 \epsilon_r} \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

ultra-cold atomic (or molecular) gas

trap using lasers

Bose-Einstein condensate

interactions:

- short-range van der Waals
- long-range dipole-dipole for some particles

periodic potentials (lattices), few particles in each well

Ultra-cold few-body systems

periodic potentials (lattices), few particles in each well

recently developed "micro-trap",

handles few particles

The dipole-dipole interaction depends both on the distance between the particles, but also their relative orientation:

Attraction may give collapse, but quasi-2D confinement + external aligning field could stabilize system

Realized with dysprosium atoms, see
Lu et al., arXiv:1108.5993v2

Figures from Lahaye, Menotti, Santos, Lewenstein, Pfau, Rep. Prog. Phys. 72, 126401 (2009)

Ultra-cold dipolar atoms or molecules

- particles in quasi-2D confinement
- dipole-dipole interaction
- dipoles aligned to external field (forms angle Θ with plane)
- -> tunable anisotropic interaction

19 classical point-particle dipoles

19 classical point particles, with dipole-dipole interaction, in 2D harmonic trap

Interaction for quantum particles

- assume tight trap in z-direction,
 with no z-nodes in wavefunction
- integration along z gives effective in-plane interaction
- we ignore any short-range interactions

Results with 3 quantum mechanical particles

- trapped atoms or molecules with dipolar interactions
- dipole moments aligned to external field
- quasi-2D trap gives anisotropic interaction

Schematic setup:

D = interaction strength (dipole moment)

Tunable Wigner states, due to tunable anisotropic interaction.

Results with 3 quantum mechanical particles

Crossing for fermions, anti-crossing for bosons.

Wigner localized dipoles: Parities

The Hamiltonian, and its eigenstates, have conserved mirror-parities. Here, a parity flip may correspond to exchanging two particles, so parity gets connected to the many-body (anti-)symmetry.

Crossing for fermions, anti-crossing for bosons.

Tunable Wigner states with dipolar atoms and molecules

PRL 105, 255301 (2010)

Jonas C. Cremon

G. M. Bruun

S. M. Reimann

Division of Mathematical Physics, LTH Lund University, Sweden

