

R&D for a SiW electromagnetic calorimeter for a future linear collider

Roman Pöschl LAL Orsay

Seminar 7/3/2011 at

Scientific activities

Standard Model of particle physics

Electromagnetism (2003-2006)

Polarised positrons at E166

Instrumentation: Realisation of Compton polarimeter s/w and Analysis: Data reconstruction Magnetisation of analysers

Quantum chromodynamics at HERA (1994-2003, PhD 2000)

Analysis: Parton dynamics through di-jet rates Instrumentation: Trigger level 2 Software: Reconstruction of backward H1 calorimeter (SpaCal)

Electroweak interactions at the ILC (since 2003)

Analysis: Higgs boson production Instrumentation: R&D program of CALICE, Beam tests Software: Developpement of tools for data reconstruction and grid exploitation

Beyond the Standard Model

Arguments for experiments at the TeV scale

1) Compelling arguments for the existence of a light Higgs boson

```
114.4 \text{ GeV} < m_{_{\rm H}} < 1 \text{ TeV}
```

2) New physics in the domain 0.1 TeV – 1 TeV ?

Exploration by new generation of accelerators

(Future) Linear electron-positron accelerators

Linear collider is integral part of European Strategy beyond 2012

Boson Boson scattering

What if no Higgs?

W, Z separation in the ILD concept

- Need excellent jet energy resolution to separate W and Z bosons in their hadronic decays $3\%/E_{jet}$ -4%/ E_{jet}

Jet energy resolution

Final state contains high energetic jets from e.g. Z,W decays Need to reconstruct the jet energy to the <u>utmost</u> precision !

Jet energy carried by ...

- Charged particles (e^{\pm} , h^{\pm} , μ^{\pm})): 65% Most precise measurement by tracker Up to 100 GeV
- Photons: 25% Measurement by electromagnetic calorimeter (ECAL)
- Neutral Hadrons: 10% Measurement by hadronic calorimeter (HCAL) and ECAL

$$\sigma_{Jet} = \sqrt{\sigma_{Track}^2 + \sigma_{Had.}^2 + \sigma_{elm.}^2 + \sigma_{Confusion}^2}$$

Confusion term

- Base measurement as much as possible on measurement of charged particles in tracking devices
- Separate of signals by charged and neutral particles in calorimeter

- Complicated topology by (hadronic) showers
- Correct assignment of energy nearly impossible
- ⇒ Confusion Term

Need to minimize the confusion term as much as possible !!!

Detector and calorimeter concept – Particle flow

Jet energy measurement by measurement of **individual particles** Maximal exploitation of precise tracking measurement

- large radius and length
 - to separate the particles
- large magnetic field
 - to sweep out charged tracks
- "no" material in front of calorimeters
 - → stay inside coil
- small Molière radius of calorimeters
 - to minimize shower overlap
- high granularity of calorimeters
 - to separate overlapping showers

Physics goals at the ILC require the construction of highly granular calorimeters!!! Emphasis on tracking capabilities of calorimeters

SiW Ecal - Basics

The SiW Ecal in the ILD Detector

Basic requirements

- Extreme high granularity
- Compact and hermetic

Basic choices

- Tungsten as absorber material
 - $X_0 = 3.5$ mm, $R_M = 9$ mm, $\lambda_1 = 96$ mm
 - Narrow showers
 - Assures compact design
- Silicon as active material
 - Support compact design
 - Allows for pixelisation
 - Large signal/noise ratio

SiW Ecal designed as particle flow calorimeter

SiW Ecal optimisation

LOI for 2009 ILC Detectors Optimisation using jet events and Pandora particle flow algorithm

Jet energy resolution strongly sensitive on cell dimensions

- Better separation power
- Importance grows towards higher energies

High granularity of Ecal is crucial for precision measurements

Calorimeter R&D for a future linear collider

- ~330 physicists/engineers from 57 institutes and 17 countries from 4 continents
- Integrated R&D effort
- Benefit/Accelerate detector development due to <u>common</u> approach

The Calice Mission

Final goal:

A highly granular calorimeter optimised for the Particle Flow measurement of multi-jets final state at the International Linear Collider

Intermediate task:

Build prototype calorimeters to

- Establish the technology
- Collect hadronic showers data with unprecedented granularity to
 - tune clustering algorithms
 - validate existing MC models

SiW Ecal Physics Prototype

14

Thickness:

525µm

French groups working on SiW Ecal

Silicon sensors, DAQ, mechanics

Mechanical aspects – Cooling Front end electronics

Silicon sensors Front end electronics

Front end electronics, Detector assembly and mechanics

Envisaged, ongoing discussion

Large scale beam tests

Experimental setup

Zoom into Ecal

Particle distance~ 5 cm

 \rightarrow No confusion !!!

- 2006, Ecal 2 / 3 equipped

Low energy electrons (1-6 GeV at DESY), high energy electrons (6-50 GeV at CERN)

- 2007, Ecal nearly completely equipped High energy pions (6-120 GeV CERN), Tests of embedded electronics
- 2008 FNAL, Ecal completely equipped Pions at low energy, Data taking with Digital Hcal (>2010?)

Calibration – Uniformity of response

Calibration with with wide spread μ -beam

18 Mio. Events Uniform response of all cells only 1.4‰ dead cells

Differences in response can attributed to different

- Manufacturers
- Production series

Experience to deal with different manufacturers and production series Essential for final detector ~3000m² of Silicon needed

Stability of calibration?

Important criterium during evaluation process by IDAG

Affects both: precision and operability of detector: $\sim 10^8$ calo cells in ILC Detector

Calibration constants in different beam test campaigns

High correlation between calibration constants

For "final" detector:

Detector modules can be calibrated in beam test prior to installation

Linearity of response

- Highly linear response over large energy range

- Linearity well reproduced by MC MIP/GeV ~ 266.5 [1/GeV]
- Non-linearity O(1%)

Energy resolution

Example 30 GeV electron beam:

Gaussian like calorimeter response

Resolution curve shows typical \sqrt{E} dependency

$$\frac{\Delta E_{meas.}}{E_{meas.}} = \left[\frac{16.6 \pm 0.1(stat.)}{\sqrt{E[\text{GeV}]}} \oplus (1.1 \pm 0.1)\right]\%$$

- Resolution well described by MC

- Confirms value used in LOI

Design emphasises spatial granularity over energy resolution

Calorimeter for Particle Flow

Exploiting the high granularity – Particle separation

High granularity allows for application of advanced imaging processing techniques

E.g. Hough transformation

Events recorded in test beam

Particle separation – cont'd

Efficiency of particle separation

Separation MIP <-> Electron

E -> 100% for up to 50% shared hits

Independent of hits generated by MIP

Full separation for distances > 2.5 cm

Granularity and hadronic cascades

(Start of) Hadronic showers in the SiW Ecal

Simple but nice

High granularity permits detailed view into hadronic shower

Hadronic models in GEANT4

Variety of models available to describe hadronic showers

Discriminative power by high granularity !?

A. Dotti (G4 Collaboration): "Rough granularity of LHC calorimeters limits possibilities" "CALICE is the perfect tool"

Finding the interaction in the SiW Ecal

Correlation:

Distribution of found interaction layers

Determination precise to two layers (Overall Layer thickness ~7mm max.)

Good agreement between Data and simulation (G4, here QGSP_BERT)

Granularity allow for resolving interaction layer with high resolution High energy cross sections well implemented in G4 simulation

Transversal shower profiles and shower radius

Affects overlap of showers <-> Importance for PFA

Longitudinal energy profiles Sensitivity to different shower components

Shower components:

- electrons/positrons
- knock-on, ionisation, etc.
- protons
 - from nuclear fragmentation
- mesons
- others
- sum

Significant difference between Models

- Particularly for short range component (protons)

Granularity of SiW Ecal allows (some) disentangling of components

Further studies for shower decomposition are ongoing

Energy depositions in different calorimeter depths

Seminar CPPM March 2011

R&D for silicon wafers

Xtalk <u>continous</u> guardring <-> Pixel

Attenuation of Xtalk

Beyond the physics prototype

Technological Prototype

Technical solutions for the/a final detector

- Realistic dimensions
- Integrated front end electronics
- Small power consumption Power pulsed electronics
- Construction 2010 2012, Testbeams 2012-2013

Technological Prototype – Design

186

mm

Slab prototype

- \Rightarrow Gaps (slab integration) : 500 μ m
- ⇔ Heat Shield: 500 µm
- ⇒ PCB : **~1200 μm**
- \Rightarrow Thickness of Glue : 100 μ m
- \Rightarrow Thickness of SiWafer : 325 μ m
- ⇒ Kapton[®] film HV : 100 µm
- \Rightarrow Thickness of W : 2100/4200 µm (± 80 µm)

Ecal detector layer - Principle

Front end electronics

- **Requirements to electronics**
 - Large dynamic range (~2500 MIPS)
 - Front end electronics embedded
 - Autotrigger at ½ MIP
 - On chip zero suppression
 - Ultra low power («25µW/ch)
 - 10⁸ channels
 - Compactness

ILC : 25µW/ch

Embedded electronics - Parasitic effects? Exposure of front end electronics to electromagnetic showers

Chips placed in shower maximum of 70-90 GeV elm. showers

Possible Effects: Transient effects Single event upsets Comparison: Beam events (Interleaved) Pedestal events

 No sizable influence on noise spectra by beam exposure

 Δ Mean < 0.01% of MIP Δ RMS < 0.01% of MIP

- No hit above 1 MIP observed
 - => Upper Limit on rate of faked MIPs: $\sim 7 \times 10^{-7}$

Seminar CPPM March 2011

Detailed noise analysis

Coherent noise

The Ecal ASIC - SKIROC

- 64 Channels
- Vss split :
 - Inputs
 - Analogue part
 - Mixed part
 - Digital part
- 250 pads
 - 3 NC
 - 17 for test purpose only
- Enhanced Power control
 - Full power pulsing capability
 - Each stage can be forced ON
- Die size
 - 7229 μm x 8650 μm

SKIROC 2 block scheme

Power pulsing (better power gating)

- Electronics switched on during 1ms of ILC bunch train and immediate data acquisition
- Bias currents shut down between bunch trains
- Mastering of technology is essential for operation of ILC detectors Encouraging results by IPNL group with similar chip

Summary and outlook

- Successful R&D for a highly granular electromagnetic calorimeter
- Detector concept is built on Particle Flow
 - Physics Prototype (2005-2009):
 - Energy resolution $\sim 17\%/\sqrt{E}$
 - Signal to Noise Ratio $\sim 8/1$
 - Stable calibration

<u>Technological Prototype</u> (2010-...):

- Mechanical concept validated
- Silicon Wafer technology at hand
- Front End Electronics will be challenging Embedded into calorimeter layers, power gating
- Supported within EUDET (2006-2010) and AIDA (2011-2015)
- Capacity of separating particles impressively demonstrated by test beam analysis
- Unprecedented realistic views into hadronic showers thanks to high granularity 'Modern bubble chamber'
- Coping with vast amount of information is challenging The harvest is just starting

Backup Slides

A generic DAQ system for the CALICE calorimeters (Technological Protoypes)

The International Linear Collider ILC

Linear Electron-Positron Collider

Technology for Main Linac

Superconductive RF cavity

ITRP Recommendation 2004

Main parameters

- √s adjustable from 200 – 500 GeV
- Luminosity $\rightarrow \int Ldt$ = 500 fb⁻¹ in 4 years
- Ability to scan between 200 and 500 GeV
- Energy stability and precision below 0.1%
- Electron polarisation of at least 80%
 Option: Polarised
 Positrons
- The machine must be upgradeable to 1 TeV

Present outlook

→ Technical design report 2012
→ R&D Project for higher Energies CLIC

Stability of calibration?

Important Criterium during evaluation process of detector concepts

Affects both: precision and operability of detector: $\sim 10^8$ calo cells in LC Detector

Calibration Constants on testbench and in beam test campaign

High Correlation between calibration constants

For "final" detector: Detector modules can be calibrated in beam test prior to installation

Angular resolution

Differences due X and Y due to geometrical properties of prototype (staggering)

Technological Prototype

- Physics prototype: Validation of main concept
- Techno. Proto : Study and validation of technological solutions for final detector
- Taking into account industrialisation aspect of process
- First cost estimation of one module

First step: Demonstrator

Developping the Techniques for Layer Construction – Thermal Layer

Proof-of-principle to build long layers

First step: Demonstrator

 Detector module realised (from mechanical point of view)
Demonstrator subject to a thermal test Seminar CPPM March 2011

Thermal Test To study thermal behaviour of detector module

Inserted Thermal Layer

Ambient Temperature	22		
Alveolar Slot	Left	Middle	Right
External		23.5	
Upper	24.8	24.8	24.6
Lower	25	30.7	25.2
Bottom	25.1	25.2	25.1

- Detector Module realised

from mechanical point of view

- Thermal test important for DBD

ASICs Frontales: Les Chips ROC

