Photon physics at the LHC with the ATLAS detector

Marco Delmastro

Marco Delmastro

Photon physics at the LHC with the ATLAS detector

already yawning?

How ATLAS will discover the SM Higgs boson^{***} (or prove it does not exist)

Marco Delmastro

** and learning a lot of physics!

* using photons!

Marco Delmastro

Photon physics at the LHC with the ATLAS detector

(D, +)*D*+ - U(+) - - - - - F, F ~~ Dr p= Drp-ie Arg $= \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\kappa}$ ∌)= × \$\$\$\$\$ (\$*\$)2 $\chi < d$, $\beta \geq 0$

Marco Delmastro

D

And the second and the second s

.

How would the SM Higgs be produced at LHC?

Marco Delmastro

Photon physics at the LHC with the ATLAS detector

events for 10⁵ pb⁻

10⁷

10⁶

10⁵

 10^{4}

10³

 10^{2}

1000

 $\sigma(pp \rightarrow H+X)$

 $\sqrt{s} = 14 \text{ TeV}$

 $m_t = 175 \text{ GeV}$

800

CTEQ4M

Cross sections and rates (at 14 TeV)

Total inelastic cross-section: $\sigma \sim 100 \text{ mb}$

bb production cross-section: $\sigma \sim 100 \ \mu b$

W (\rightarrow I ν) production cross-section: $\sigma \sim$ 10 nb

Higgs (m_H=150 GeV) cross-section: $\sigma \sim$ 10 pb

Total
$$\sigma$$
 / Higgs σ > 10¹⁰

WW do we want to measure photons at LHC

How would the SM Higgs decay?

Where is the Higgs boson hiding?

Where is the Higgs boson?

Why photons?

When the second second do we use to measure photons from the Higgs boson decay

ATLAS EM calorimeter

Photon physics at the LHC with the ATLAS detector

... on a large background!

"Irreducible" background

How large is the "large" background?

M_H (GeV)	110	115	120	130	140
Signal	20.1	20.4	20.7	18.5	14.1
γγ			5540		
γj			2500		
jj			360		
Drell Yan			90		
Total background			8490		

Table 12: Numbers of signal $(H \rightarrow \gamma \gamma)$ and background events expected at an integrated luminosity of 1 fb⁻¹ for $\sqrt{s} = 7$ TeV. For the backgrounds, the number of events is estimated in the mass window of [100 - 150] GeV.

How does a jet faking a direct photon look like?

A well-segmented EM calorimeter comes at hand!

Discriminating variables for photon ID

Discriminating variables for photon ID

$$F_{\text{side}} = \frac{E(\pm 3) - E(\pm 1)}{E(\pm 1)}$$

Containment in η $E(\pm n)$ is the sum of E in $\pm n$ strips about max

$$\Delta E = \left[E_{2^{\text{nd}}\text{max}}^{S\,1} - E_{\text{min}}^{S\,1} \right] / \text{MeV}$$

E^{SI}_{min} is the energy of the strip cell with least energy between the 1st and and 2nd maxima

Asymmetry between 1st and 2nd maxima

$$w_{s3} = \sqrt{\frac{\sum E_i (i - i_{\max})^2}{\sum E_i}}$$

Width (cell units) using 2 strips about max.

 $w_{s \text{ tot}}$

Width (cell units) using ~ 40 strip cells, 20 in η and 2 in ϕ .

Discriminating variables in simulated data

Discriminating variables in simulated data

Photon identification efficiency in simulated data

Discriminating variables in real data

Discriminating variables in real data

Photon identification efficiency from real data

Ambient energy density

Isolation energy (all photon candidates)

When the second second can we learn from direct photons production

A lot of interesting physics!

Marco Delmastro

Photon candidates in inclusive sample after cuts

"2D-sidebands" purity estimation method

Purity estimation: two (small!) corrections

Direct photons!

Data-driven photon purity

Inclusive direct photon cross section

Isolation < 4 GeVin cone $\triangle R = 0.4$ (vary isolation from 2 to 6 GeV)

80

90

 E_{T}^{γ} [GeV]

100

Scale variation

(independently

from $\mu = 0.5$

 $E_T \gamma$ to μ =

 $2E_{T}\gamma$)

Inclusive direct photon cross section

When the second s can we say about the Higgs boson with the photon measurements already done at LHC

Twice the 2D-sidebands method

Photon physics at the LHC with the ATLAS detector

Diphoton spectrum vs $m_{\gamma\gamma}$

Projected sensitivity with 1 fb⁻¹ at 7 TeV

How much data for a discovery (or exclusion?)

the first

seen by A

Marco Delmastro

Photon physics at the LHC with the ATLAS detector

References

- The ATLAS Collaboration. Prospects for the Discovery of the Standard Model Higgs Boson Using the $H \rightarrow \gamma \gamma$ Decay.
 - ✓ ATL-PHYS-PUB-2009-053, 2009.
- The ATLAS Collaboration. Evidence for prompt photon production in pp collisions at \sqrt{s} = 7 GeV with the ATLAS detector.
 - ✓ ATLAS-CONF- 2010-077, 2010.
- The ATLAS Collaboration. Measurement of the inclusive isolated prompt photon cross section in pp collisions at \sqrt{s} = 7 TeV with the ATLAS detector.
 - ✓ Accepted for publication by Phys. Rev. D, 2010. arXiv:1012.4389.
- The ATLAS Collaboration. Measurement of the backgrounds to the H → γ γ search and reappraisal of its sensitivity with 37 pb⁻¹ of data recorded by the ATLAS detector.
 ✓ ATLAS-CONF-2011-004
- The ATLAS Collaboration. Further investigations of ATLAS Sensitivity to Higgs Boson Production in different assumed LHC scenarios.
 - ✓ ATL-PHYS-PUB-2011-001, 2011

