

Gravitational waves from coalescing binaries

R.Sturani

Università di Urbino (Italy)

LAPP @ Annecy, April 15th 2011

Gravitational wave detectors

- Natural detectors
- Man-made detectors
 - Working principle
 - Status
 - Prospects

- Gravi
 - Gravitational wave detectors
 - Natural detectors
 - Man-made detectors
 - Working principle
 - Status
 - Prospects
- 2 Data Analysis

- Gravitational wave detectors
 - Natural detectors
 - Man-made detectors
 - Working principle
 - Status
 - Prospects
- 2 Data Analysis
- 3 Coalescing binaries
 - Rates
 - Source modeling
 - Fundamental physics

Urbino Virgo Data Analysis group activities: search for coalescing binaries

Gravitational
wave
detectors
Natural detectors
Man-made detectors
Working principle
Status
Prospects

Data Analys

binaries
Rates
Source modeling

- Waveform modeling & data analysis implementation (RS)
- Experimental searches (Marica Branchesi, Gianluca Guidi, RS, Andrea Viceré)

 EM follow-up observations and development of image analysis procedures able to detect the EM counterparts (Marica Branchesi)

Gravitational wave detectors

Natural detectors
Man-made detector
Working principle
Status
Prospects

Data Analys

Coalescing binaries

Rates
Source modeling

- Gravitational wave detectors
 - Natural detectors
 - Man-made detectors
 - Working principle
 - Status
 - Prospects
- 2 Data Analysis
- Coalescing binaries
 - Rates
 - Source modeling
 - Fundamental physics

GW interaction with point-particles

Gravitational

wave detectors

Man-made detector
Working principle
Status

Data Analys

Coalescino binaries

Rates

Source modeling

Physical distances are affected by GW's:

$$egin{align} g_{\mu
u} &
ightarrow \eta_{\mu
u} + h_{\mu
u}, & ||h_{\mu
u}|| \ll 1 \ L &= \int_0^{ar{L}} dx \sqrt{1 + h_{xx}} &\simeq ar{L} \left(1 + rac{1}{2} h_{xx}
ight) \end{aligned}$$

or by geodesic equation deviation

$$\delta \ddot{L}^i = R^i_{tjt} L^j = -\frac{1}{2} \ddot{h}^{TT}_{ij} L^j$$

Light path:
$$\delta \phi = 4\pi \delta L/\lambda$$

EoM for test particle:
$$\ddot{x}^i + \omega^2 x^i = -\frac{1}{2} \ddot{h}^i_j x^j$$

GW interaction with point-particles

Gravitational wave detectors

Natural detectors

Man-made detector

Working principle

Status

Data Analys

binaries

Rates

Source modeling
Fundamental phys

Physical distances are affected by GW's:

$$g_{\mu\nu} \rightarrow \eta_{\mu\nu} + h_{\mu\nu}, \qquad ||h_{\mu\nu}|| \ll 1$$

$$L = \int_0^{ar{L}} dx \sqrt{1 + h_{xx}} \simeq ar{L} \left(1 + rac{1}{2} h_{xx}
ight)$$

or by geodesic equation deviation

$$\delta \ddot{L}^i = R^i_{tjt} L^j = -\frac{1}{2} \ddot{R}^{TT}_{ij} L^j$$

Light path: $\delta \phi = 4\pi \delta L/\lambda$

EoM for test particle: $\ddot{x}^i + \omega^2 x^i = -\frac{1}{2} \ddot{h}_i^i x^j$

Localized source:

$$h_{ij}^{TT}(t,x) \simeq rac{4G_N}{|x|} \Lambda_{ij;kl}^{TT} \int d^3x' T_{ij}(t-|x-x'|) \sim rac{G_N}{r} \ddot{Q}_{ij}$$

$$\frac{dE}{dAdt} = \frac{1}{16\pi G_N} \langle \dot{P}_+^2 + \dot{P}_\times^2 \rangle \qquad Flux = \frac{G_N}{5} \langle \ddot{Q}_{ij} \ddot{Q}_{ij} \rangle$$

Gravitational wave detectors

Natural detectors

Man-made detector

Working principle
Status

Prospects

Data Analys

Coalescing binaries

Rates
Source modeling

- Gravitational wave detectors
 - Natural detectors
 - Man-made detectors
 - Working principle
 - Status
 - Prospects
- 2 Data Analysis
- Coalescing binaries
 - Rates
 - Source modeling
 - Fundamental physics

The Hulse-Taylor binary pulsar

GW's have been observed in the NS-NS binary system:

PSR B1913+16

Observation of orbital parameters $(a_p \sin \iota, e, P, \dot{\theta}, \gamma, \dot{P})$

determination of m_p , m_c (1PN physics, GR)

Energy dissipation in GW's $\rightarrow \dot{P}^{(GR)}(m_p, m_c, P, e)$, compared with $\dot{P}^{(obs)}$

$$rac{1}{2\pi}\phi = \int_0^T rac{1}{P(t)} dt \simeq rac{T}{P_0} - rac{\dot{P_0}}{P_0^2} rac{T^2}{2}$$

Gravitationa wave detectors Natural detectors

Working pri Status

Data Analys

binaries
Rates
Source modeling
Fundamental phys

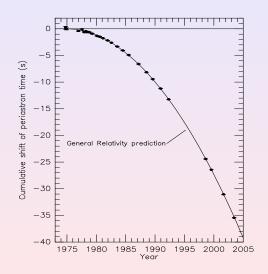
Weisberg and Taylor (2004)

Gravitation wave

Natural detectors

Man-made detectors

Working princip Status


Doto Ano

Data Arialy

Coalescin

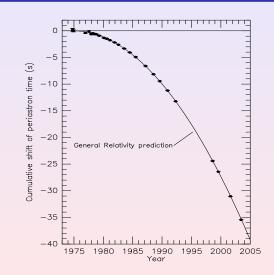
Rates

$$rac{\dot{P}_{GR}-\dot{P}_{exp}}{\dot{P}}\sim 10^{-3}$$

Weisberg and Taylor (2004)

Gravitatio wave

Natural detectors


Man-made detector Working principle Status

Data Analy

Coalescing binaries

Rates

Source modeling

 $\frac{SK}{P} \sim 10^{-3}$

10 pulsars in NS-NS, still \sim 100Myr for coalescence

Gravitation wave detectors

Man-made detectors

Working principle
Status
Prospects

Data Analys

Coalescing binaries

Rates
Source modeling

- Gravitational wave detectors
 - Natural detectors
 - Man-made detectors
 - Working principle
 - Status
 - Prospects
- 2 Data Analysis
- Coalescing binaries
 - Rates
 - Source modeling
 - Fundamental physics

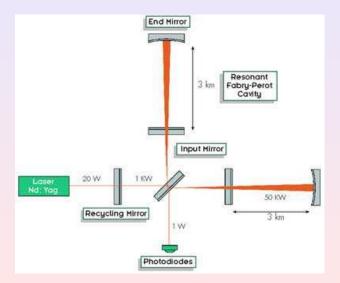
Large interferometers

Gravitation wave

Natural detectors

Man-made detecto
Working principle

Prospect


Dala Allaiys

Coalescing binaries

Rates

Source modeling

Fundamental physics

Detector Network

Gravitation vave

Natural detectors
Man-made detectors
Working principle
Status
Prospects

Data Analys

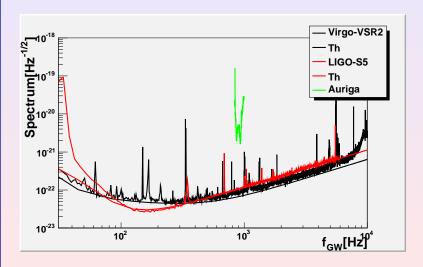
Coalescing binaries

Rates

Source modeling

Fundamental physics

Sensitivity


Gravitation

wave detectors

Natural detectors
Man-made detector
Working principle
Status

Data Analy

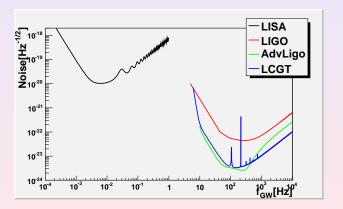
Coalescing binaries

Prospects

Gravitational
vave
letectors
Natural detectors
Mon-made detectors
Working principle
Status
Prospects

ata Analys

Coalescing binaries
Rates
Source modeling
Fundamental physi


enLIGO/Virgo+ last run (S6/VSR3) ended in October 2010

- LIGO is now off for major hardware upgrade
- Virgo now in commissioning phase
 Bar detectors in science run during 2011-2014 (possibly also GEO and Virgo)
 - LIGO/Virgo Advanced: from 2014-2015
 - LISA (>2020, pathfinder due in 2012)
 - LCGT in ~ 10 years, first 3 years funded last June
 - AIGO project for a large interferometer in Australia
 10 yrs
 - ET project: new generation of large interferometers (~ 30-km-long arms)

Sensitivity of future detectors

Prospects

Gravitation wave detectors

Natural detectors

Man-made detecto

Working principle

Status

Prospects

Data Analysis

Coalescing binaries

- Gravitational wave detectors
 - Natural detectors
 - Man-made detectors
 - Working principle
 - Status
 - Prospects
- 2 Data Analysis
- Coalescing binaries
 - Rates
 - Source modeling
 - Fundamental physics

Data analysis techniques in GW detection

An experimental apparatus output: time series

$$s(t) = h(t) + n(t)$$
 $h(t) = D^{ij}h_{ij}(t)$

Noise is conveniently characterized by its spectral function

$$\langle \tilde{n}(f)\tilde{n}^*(f')\rangle = \delta(f - f')S_n(f)$$
 [Hz⁻¹]

Filtering enhances the sensitivity:

filtered signal
$$\sim \frac{\langle hF \rangle}{\langle NN \rangle^{1/2} \langle FF \rangle^{1/2}}$$

maximized for $F \propto h/S_n$

$$SNR = \left[\int \frac{f|\tilde{h}(f)|^2}{S_n} d \ln f \right]^{1/2}$$

Gravitational wave detectors

Man-made detectors

Working principle

Status

Prospects

Data Analysis

binaries
Rates
Source modeling
Fundamental physics

Gravitatior wave detectors

Natural detectors

Man-made detector

Working principle

Status

Data Analys

Coalescing binaries

Rates
Source modeling
Fundamental phys

- Gravitational wave detectors
 - Natural detectors
 - Man-made detectors
 - Working principle
 - Status
 - Prospects
- 2 Data Analysis
- Coalescing binaries
 - Rates
 - Source modeling
 - Fundamental physics

Gravitation wave detectors

Natural detectors

Man-made detecto

Working principle

Status

Data Analys

Coalescing binaries

Rates Source modeling Gravitational wave detectors

- Natural detectors
- Man-made detectors
 - Working principle
 - Status
 - Prospects
- 2 Data Analysis
- Coalescing binaries
 - Rates
 - Source modeling
 - Fundamental physics

How many coalescences can LIGO/Virgo see?

Gravitational wave detectors Natural detectors Man-made detecto Working principle Status

Data Analy

Coalescing binaries
Rates
Source modeling

LIGO S5 (ended in Sep 2007) could have seen a pair of $1.4M_{\odot}$ NS ($50M_{\odot}$ BH's)@ $r\sim30$ (200) Mpc

NS-NS 50 M_{\odot} BH-BH Astrophysical rates (L₁₀⁻¹Myear⁻¹) $10 \div 10^3$ $10^{-1} \div 100$

Number of equivalent galaxies $N_{L_{10}}$ with blue luminosity $L_{10} = 10^{10}$ blue solar lum.

$$N_{L_{10}}(D_H) = 0.02 imes \left(rac{D_H}{Mpc}
ight)^3$$

Present bound: $R_{BH-BH} \lesssim 10^4 \div 100 \text{ Myr}^{-1} L_{10}^{-1}$ AdvLIGO/Virgo, reasonably favourable case:

$$R_{NS-NS}^{(obs)} \sim 100 {
m yr}^{-1}$$
 $R_{BH-BH}^{(obs)} \sim 10^3 {
m yr}^{-1}$ de Freitas Pacheco et al. PRD 2006

I. Mandell et al. PRD 2010

Gravitation wave detectors

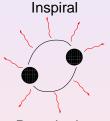
Natural detectors
Man-made detecto
Working principle
Status

Data Analys

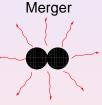
Coalescing binaries

- Gravitational wave detectors
 - Natural detectors
 - Man-made detectors
 - Working principle
 - Status
 - Prospects
- 2 Data Analysis
- 3 Coalescing binaries
 - Rates
 - Source modeling
 - Fundamental physics

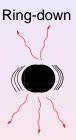
Signal templates


Gravitationa wave

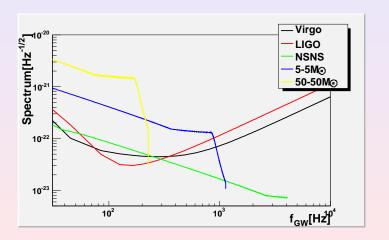
detectors


Man-made detectors
Working principle
Status
Prospects

Data Arialys


Coalescing binaries

Perturbative PN-series


Non Perturbative

Expansion in pseudo-normal modes

Sensitivity to binary inspiral

The importance of the merger

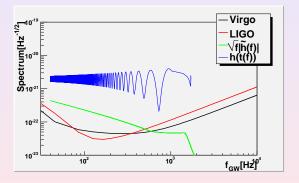
Gravitationa wave

detectors

Natural detectors

Man-made detector

Working principle


Status

Fluspects

Data / iliaiyoi

Coalescing binaries

Source modeling

$$h(t(f))$$
 vs. $|\sqrt{f}\tilde{h}(f)|$

Description of the three phases

Gravitational
wave
detectors

Natural detectors

Man-made Working pr Status Prospects

Data Analy

Coalescing binaries

Source modeling

Inspiral

$$N_{cycles} \simeq 1.6 \cdot 10^4 \left(\frac{10 \text{Hz}}{f_{min}} \right)^{5/3} \left(\frac{1.2 M_{\odot}}{M_c} \right)^{5/3}$$

Sensitivity $\propto M_c^{5/3} \sqrt{N_{cycles}} \propto M^{1/3} \mu^{1/2}$, $f_{Max} \propto M^{-1}$

Merger

Comparison with Numerical Relativity:

NINJA to test search pipelines against Numerical Relativity Injections

NRAR to test search waveforms (analytical and phenomenological)

Ring-down

$$h(t) = \sum_{lmn} e^{-\tau_{lmn}(M,S)} \times \\ [A\cos(\omega_{lmn}(M,S)t) + B\sin(\omega_{lmn}(M,S)t)]$$

Binary system & PN corrections: spinless

Inspiral

Virial relation:

$$v \equiv (G_N M \pi f_{GW})^{1/3}$$
 $v = \frac{m_1 m_2}{(m_1 + m_2)^2}$

$$E(v) = -\frac{1}{2}\nu M v^2 \left(1 + \#(\nu)v^2 + \#(\nu)v^4 + \ldots\right)$$

$$P(v) \equiv -\frac{dE}{dt} = \frac{32}{5G_N} v^{10} \left(1 + \#(\nu)v^2 + \#(\nu)v^3 + \ldots\right)$$

E(v)(P(v)) known up to 3(3.5)PN, see Damour, Blanchet ...

$$\frac{1}{2\pi}\phi(T) = \frac{1}{2\pi} \int_{-\infty}^{T} \omega(t)dt = -\int_{-\infty}^{v(T)} \frac{\omega(v)dE/dv}{P(v)}dv$$
$$\sim \int_{-\infty}^{\infty} \left(1 + \#(v)v^2 + \ldots + \#(v)v^6 + \ldots\right) \frac{dv}{v^6}$$

Gravitationa wave

Natural detectors
Man-made detector
Working principle
Status
Prospects

Data Analy

Coalescing binaries Rates Source modeling

Spinning binary systems & PN corrections

Gravitationa wave detectors

Natural detectors
Man-made detecto
Working principle
Status

Data Analys

binaries

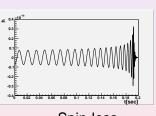
Rates

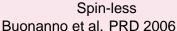
Source modeling

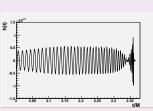
Inspiral

$$\begin{split} \frac{d\phi}{dv} &\propto \left[1 + \#(\nu)v^2 + \#(\nu, \mathbf{L} \cdot \mathbf{S_{1,2}})v^3 + \#(\nu, \mathbf{L}, \mathbf{S_{1,2}})v^4 + \ldots\right] \\ &\qquad \qquad \frac{d\mathbf{L}}{dt} &\propto \Omega(\nu, v, \mathbf{S_{1,2}}) \times \mathbf{L} \\ &\qquad \qquad \frac{d\mathbf{S_{1,2}}}{dt} &\propto \Omega(\nu, v, \mathbf{L}, \mathbf{S_{2,1}}) \times \mathbf{S_{1,2}} \end{split}$$

+ finite size effects $\propto v^{10}$, but with possble large pre-factors for NS


Merger non-perturbative modeling


First complete analytical waveform from spinning binaries


wave
detectors
Natural detectors
Man-made detect
Working principle
Status

Data Analy:

Coalescing binaries

Spinning RS et al. CQG 2010

Phenomenological model

Inspiral

System is evolved (via a Taylor T4) approximant until a matching frequency f_m is reached:

$$\frac{d\phi}{dt} = \frac{v^3}{m}$$
 $\frac{dv}{dt} = -\frac{F(v)}{dE/dv}$

 f_m is determined empirically.

Phenomenological part

$$\frac{d\phi}{dt} = \frac{f_1}{1 - \frac{t}{T_\Delta}} + f_0$$

 f_0, f_1, T_P are determined by imposing continuity of $\dot{\phi}, \ddot{\phi}, \ddot{\phi}$.

• Ring down

When $d\phi/dt$ reaches $0.8 \times f_{RD}$, the ring down is attached

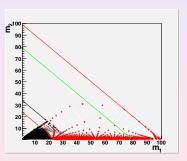
$$f_{RD} = f_{RD}(S_1, S_2, L, \eta)$$

Natural detectors
Man-made detector
Working principle
Status

Data Analys

Coalescing binaries Rates Source modeling

Matched filtering and templates


Gravitationa wave

Natural detectors Man-made detectors Working principle Status Prospects

Data Analys

Coalescing binaries Rates

- Inspiral only
 2.8 < M/M_☉ < 35
- Inspiral+Merger+RD 25 < M/M_☉ < 100, EOBNR non-perturbative template banks, calibrated on PN inspiral and numerically generated wf's
- Ring-down only $80 < M/M_{\odot} < 500$

The pipeline

Wave
detectors
Natural detectors
Man-made detectors
Working principle
Status

ata Analys

Coalescing binaries Rates Source modeling Matched-filter with \sim few 10³ templates, overlap > 0.95

- $\rightarrow \text{coincidence among detectors}$
- \rightarrow signal-base veto
- \rightarrow comparison to time-shifted data for loud triggers

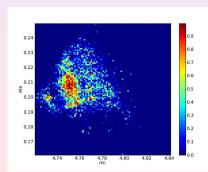
Upper limits for R per space-time volume, given efficiency $\epsilon(\bar{x})$ at loudest signal with SNR \bar{x}

$$R \sim \frac{1}{TV\epsilon(\bar{x})}$$

 ϵ estimated on software injections

Gravitational wave

Natural detectors Man-made detector Working principle Status Prospects


ata Analys

Coalescing binaries

Source modeling

How to estimate binary's parameters? template bank with spins: impractical \rightarrow Bayesian inference: 15-dimensional parameter space θ random sampling \rightarrow posterior probabilities and posterior density functions

$$p(\text{data}|\theta,\mathcal{M}) \propto \mathcal{L}(\theta|\text{data},\mathcal{M})\pi(\theta,\mathcal{M})$$

Gravitation wave detectors

Natural detectors

Man-made detector

Working principle

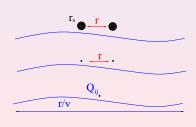
Status

Data Analys

Coalescino binaries

Source modeling
Fundamental physics

- Gravitational wave detectors
 - Natural detectors
 - Man-made detectors
 - Working principle
 - Status
 - Prospects
- 2 Data Analysis
- Coalescing binaries
 - Rates
 - Source modeling
 - Fundamental physics


Effective field theory of Gravity

PN expansion of the fundamental GR Lagrangean can be computed via EFT methods

Goldberger and Rothstein 2004

Integrate out short-distance d.o.f. → coefficients of operators consistent with long-wavelength physics

- Very short scale r_s, internal structure: negligible until 5PN
- Short distance \rightarrow potential gravitons $k_{\mu} \sim (v/r, 1/r)$
- Long wavelength ightarrow gravity waves $k_{\mu} \sim (v/r, v/r)$, background field

Integrating out potential gravitons

Fundamental

$$g_{\mu\nu} = \eta_{\mu\nu} + H_{\mu\nu}$$
 $S_{EH} = -\frac{1}{32\pi G_N} \int d^4x \sqrt{g} \, R(H)$
 $S_{pp} \simeq -m \int dt \left(1 + \frac{H_{00}}{2} + H_{0i}v_i + \frac{(H_{ij})v^iv^j}{2}\right)$

Effective

$$S_{pp}=\int dt \left(rac{1}{2}\sum_{a}m_{a}v_{a}^{2}+rac{G_{N}m_{1}m_{2}}{r}+\ldots
ight)$$

Re-derivation of 2-body Lagrangean at 3PN order:
Computation of 80 Feynman diagrams via automatized algorithm, paving the way for higher order computations arXiv:1104.1122, collaboration with S. Foffa, University of Geneva

Gravitationa wave detectors

Man-made detector
Working principle
Status
Prospects

Dala Allalys

binaries
Rates
Source modeling

Fundamental physics

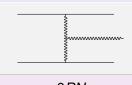
Fundamental physics

Conservative dynamics

Classical massive particles (neutron stars, black holes ...) Scaling arguments associate Feynman diagrams with specific PN orders:

The transfer of the state of th

$$V = -\frac{Gm_1m_2}{r} \left[1 - \frac{r_s}{2r} + \frac{1}{4} \left(\frac{r_s}{r} \right)^2 \left(1 - 2\nu + 5\nu^2 \right) \right]$$


+v-dependent terms

Radiation diagrams

Long wavelength emitted gravitons

To stand the stand of the stand

0PN

1*PN*

give rise to radiation coupling:

$$h_{ij}\left[\ddot{Q}_{ij}+\ldots\right]$$

Emitted power via optical Im theorem:

Gravitationa wave

Man-made detectors
Man-made detector
Working principle
Status
Prospects

Data Analy

Coalescing binaries

Precision test of gravity

Gravitational
wave
detectors
Natural detectors
Man-made detectors
Working principle
Status
Prospects

Data Analys

binaries

Rates

Source modeling

Fundamental physics

• GW have been observed from binary pulsars: $(\dot{P}_{exp} - \dot{P}_{th})/\dot{P}_{exp} \sim 10^{-3}$ (Hulse & Taylor) test of 1PN conservative physics and leading order dissipative effects

Bound on triple interaction vertex: $\beta_3 < 2 \cdot 10^{-4}$

 Bayesian inference test: model comparison of different fundamental theories of gravity
 Disentangle theory from source parameters

(work in progress)

Coalescing binaries as standard sirens

LISA and/or ground network can localize the sources (triangolation)

Complementarity with astrophysics: distance vs. red-shift

$$h_c \simeq rac{1}{D} (G_N M_c)^{5/3} (f_e)^{2/3} \cos(\phi (t_e/M_c,
u))^{t_r = t_e (1+z)} \ rac{1}{D_L} (G_N M_c(z))^{5/3} (f_r)^{2/3} \cos(\phi (t_r/M_c(z),
u))$$

$$D_L \equiv D(1+z), M_c(z) \equiv M_c(1+z)$$

can measure the luminosity distance, complementarity with astrophysics: distance vs.red-shift

Standard sirens

Schutz '86, Holz & Hughes '08

Prospects

Data Analy

0--1---

binaries
Rates

Conclusions & Work in Progress

GW's are out there and their detection will open a new window on the Universe:

- New way to detect compact objects in the Universe $(M_{bh} < 100 M_{\odot} \text{ for LIGO/Virgo}, M_{bh} < 10^7 M_{\odot} \text{ for LISA})$ and measure their properties
- Test of General Relativity/extensions, within and beyond post-Newtonian perturbation theory
 - derivation of 2-body Lagrangean at 4th PN order (collaboration with S. Foffa from Geneva University)
 - search within Bayesian inference methods for test of/deviations from General Relativity (problem with source parameter degeneracy, collaboration with Birmingham LIGO group)
- search for finite size effects from neutron stars in GW
- collaboration within NINJA and NRAR to improve complete waveforms of spinnning coalescing binaries

Gravitational
wave
detectors
Natural detectors
Man-made detectors
Working principle
Status
Prospects

Data Analys

binaries
Rates
Source modelii

Gravitation wave

Natural detectors

Man-made detector

Working principle

Droopoot

Data Analys

Coalescin

Rates

Source modelin

Fundamental physics

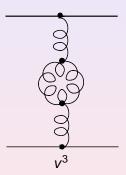
Spare Slides

Quantum corrections are irrelevant

wave

detectors

Man-made detectors
Working principle
Status


Data Analy

Coalescing

0-1--

Source modeling

Fundamental physics

"Usual" rule for quantum weight $\hbar^{I-V} = \hbar^{L-1}$

Internal structure

Gravitational
wave
detectors
Natural detectors
Man-made detectors
Working principle

Data Analy:

Coalescing binaries

Source modeling
Fundamental physics

Fundamental coupling: $m \int d\tau$

Very short distance physics : eff. operators 2PN-correction to the potential:

$$c_R \, r_s^2 \int d au R + c_V r_s^2 \, \int d au R_{\mu
u} \dot{x}^
u \dot{x}^
u$$

unphysical source bare-parameter redefinition (wiped away by coordinate re-definition)

First correction, 5PN (effacement principle, Damour '82):

$$\begin{split} c_{\text{e}} \, \textit{mr}_{\text{s}}^{4} \, \int d\tau R_{\mu\alpha\nu\beta} R_{\gamma\delta}^{\mu\;\nu} \, \dot{x}^{\alpha} \dot{x}^{\beta} \dot{x}^{\gamma} \dot{x}^{\delta} \\ c_{\textit{m}} \, \textit{mr}_{\text{s}}^{4} \, \int d\tau \epsilon^{\mu\nu\rho\sigma} R_{\mu\alpha\nu\beta} R_{\rho\gamma\sigma\delta} \dot{x}^{\alpha} \dot{x}^{\beta} \dot{x}^{\gamma} \dot{x}^{\delta} \end{split}$$

 $c_{\rm e}, c_{\rm m} \propto (r_{\rm s}/G_{\rm N}m)^4$ can be large for neutron stars

Example of tagging of fundamental physics effects

Gravitational wave detectors

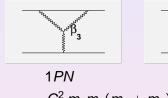
Natural detectors
Man-made detecto
Working principle
Status
Prospects

Data Analys

binaries
Rates
Source modelin

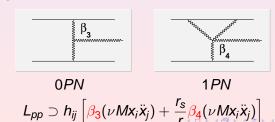
Fundamental physics

 $\beta_{3,4}$ is a tag, not a viable modification of General Relativity Effect on the phase:


$$\begin{split} \phi & \propto \left(\frac{|t-t_c|}{M_c}\right)^{5/8} \times \left[1 - \frac{5}{2}\beta_3 + \left(a_1(\nu) + b_1(\beta_3, \beta_4, \nu)\right)v^2 \right. \\ & + \left(a_2(\nu) + b_2(\beta_3, \beta_4, \beta_{LS})\right)v^3 \ldots\right] \end{split}$$

 $\beta_{3,4}$ effect \rightarrow can be reabsorbed by shifting M_c , ν (m_1,m_2) at PN order \geq 1.5 degeneracy with spin-dependent terms Need for use of other harmonics than the fundamental one to constrain $\beta_{3,4}$

Graviton self-interaction vertices


Conservative dynamics

$$V \supset \frac{\beta_3}{r^2} \frac{G_N^2 m_1 m_2 (m_1 + m_2)}{r^2} + \frac{\beta_4}{r^3} \frac{G_N^3 m_1^2 m_2^2}{r^3}$$

2PN

Emission

Gravitation: wave

Natural detectors

Man-made detect

Working principle

Status
Prospects

Data Analys

Coalescing

Constraints

Gravitationa wave

Natural detectors Man-made detector Working principle Status Prospects

Data Analys

binaries

Rates

Source modeling

Fundamental physics

At present: Hulse-Taylor Pulsar gives best constraint on non-conservative effect from β_3

$$\dot{P}_{eta_3} = \dot{P}_{GR}(1 + ceta_3) \qquad c \simeq 3.21$$

Given that $\frac{\dot{P}_{obs}}{\dot{P}_{GR}} - 1 \simeq 0.1\% \implies \beta_3 = (4.0 \pm 6.4) \cdot 10^{-4}$ β_3 already constrained by Lunar Laser Ranging, as @ 1PN

$$\beta_3 = \beta_{PPN} < 2 \cdot 10^{-4}$$

No interesting existing bound on β_4

Cannella et al. '09