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Introduction - from small to large scale

einen kurzen Kino Zeit
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Large Scale Structure (LSS)

Inhomogeneous Universe on small scales

- Galaxy clusters and groups

- Positions are correlated

Great wall

- scale of 100h−1Mpc

- Universe on length scales

> 200h−1Mpc smooth

Qn: Can we predict/
understand the structures and their
evolution?

[SDSS + CfA1]
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LSS - understanding the formation

∂ρ

∂t
+∇ · (ρv) = 0 Continuity equation

∂v

∂t
+ (v · ∇)v +

∇P

ρ
= −∇Φ Euler equation

∇2Φ = 4πGρ Poisson equation

System of non-linear coupled differential equations, no analytical solution in general

Continuity equation :- matter conservation

Euler equation :- momentum conservation

Poisson equation:- gravitational potential

Our interest: chasing the evolution of inhomogeneities
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Linear Theory of LSS

Velocity field = homogeneous expansion + peculiar velocity v

Density field = Average density field + density contrast δ(x, t)

∂v

∂t
+

ȧ

a
v +

1

a
(v · ∇)v = −

1

a
∇Φ

∂δ

∂t
+

1

a
∇ · [(1 + δ)v] = 0

∇2Φ =
3H2Ωm

2a
δ

Linearize and combine:
∂2δ

∂t2
+

2ȧ

a

∂δ

∂t
−

3H2
0Ωm

2a3
δ = 0

Has two solutions:
δ ∝ a(t) Growing mode

δ ∝ a−3/2(t) Decaying mode
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LSS - power spectrum

Impossible to exactly simulate our
universe - exact initial conditions unknown

Statistically predict the properties

Correlation function - measure of the
statistical properties

Two point correlation function - the matter
power spectrum

Three point correlation function - bi-
spectrum . . .

P (k)δD(k+ k′) ≡ 〈δ(k)δ(k′)〉
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Non-linearities - where and why?
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Non-linearities - where and why?

BAO at k ∼ 0.1h/Mpc

Potential to constrain expansion
history

Can differentiate between differ-
ent DE models
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Non-linearities - where and why?

Jennings et.al. 1998

arXiv:0908.1394

BAO at k ∼ 0.1h/Mpc

Potential to constrain expansion
history

Can differentiate between different
DE models

Model w0 wm am ∆m

INV1 -0.4 -0.27 0.18 0.5

INV2 -0.79 -0.67 0.29 0.4

SUGRA -0.82 -0.18 0.1 0.7

2EXP -1.0 0.01 0.19 0.043

AS -0.96 -0.01 0.53 0.13

CNR -1.0 0.1 0.15 0.016
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Non-linearities - where and why?

(Shamelessly) stolen from Y. Wong’s talk given at neutrino 2010
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Non-linearities - current approaches

Zel’dovich approximation :-

P (k) =

∫

d3r

(2π)3
eιk·r

[

e−[k2σ2

v−I(k,r)] − 1
]

I(k, r) ≡

∫

d3q(k · q)2 cos(k · q)PL(q)/q
4

σv = I(k, 0)/k2

Effective expansion in the amplitude of PS

Delicate cancellations between different
orders

Improvement over linear theory

PS in Zel’dovich approximation

Suchita Kulkarni, BCTP – p. 12



Non-linearities - current approaches

Numerical simulations

Millennium simulation

Power spectrum (normalized to smooth)
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Actual realization of initial fluctuations
dark matter, galaxies

Scatter in initial realization due to finite number
of modes

Springel et. al. 2005

arxiv:astro-ph/0504097Suchita Kulkarni, BCTP – p. 13



Perturbation Theory for cosmology

∂δ

∂τ
+∇ · [(1 + δ)v] = 0;

∂v

∂τ
+Hv + (v · ∇)v = −∇φ; ∇2φ =

3

2
ΩmHδ

In Fourier space with θ(x, τ) ≡ ∇ · v(x, τ)

∂ δ(k, τ)

∂ τ
+ θ(k, τ) +

∫

d3q d3p δD(k− q− p)α(q,p)θ(q, τ)δ(p, τ) = 0

∂ θ(k, τ)

∂ τ
+H θ(k, τ) +

3

2
H2δ(k, τ) +

∫

d3q d3p δD(k− q− p)β(q,p)θ(q, τ)θ(p, τ) = 0

Mode - mode coupling controlled by:-

α(p,q) =
(p+ q) · p

p2
, β(p,q) =

(p+ q)2 p · q

2 p2q2
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Linear approximation

α(p,q) = β(p,q) = 0

No mode-mode coupling

∂ δ(k, τ)

∂ τ
+ θ(k, τ) = 0

∂ θ(k, τ)

∂ τ
+H θ(k, τ) +

3

2
H2δ(k, τ) = 0

Ωm = 1 → H ∼ a1/2

↓

δ(k, τ) = δ(k, τi)

(

a(τ)

a(τi)

)m

−
θ(k, τ)

H
= mδ(k, τ)

m =















1 Growing mode

−3
2

Decaying mode
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Compactifying PT for cosmology

∂δ

∂τ
+∇ · [(1 + δ)v] = 0;

∂v

∂τ
+Hv + (v · ∇)v = −∇φ; ∇2φ =

3

2
ΩmHδ

Define





ϕ1(k, η)

ϕ2(k, η)



 ≡ e−η





δ(k, η)

−θ(k, η)/H



 η = log
a

ain
Ω =





1 −1

−3/2 3/2





Then (assuming EdS cosmology) we can write:-

(δab∂η + Ωab)ϕb(k, η) = eηγabc(k, −p, −q)ϕb(p, η)ϕc(q, η) ,

With mode-mode coupling γabc(k,p,q) (a, b, c,= 1, 2)

γ121(k, p, q) = γ112(k, q, p) =
1

2
δD(k+ p+ q)α(p,q) ,

γ222(k, p, q) = δD(k+ p+ q)β(p,q) ,
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Perturbation Theory for cosmology

The action is given by

S =

∫

dη [χa(−k, η) (δab∂η +Ωab)ϕb(k, η)

− eηγabc(−k,−p,−q)χa(k, η)ϕb(p, η)ϕc(q, η)]

Z[Ja, Kb; ϕa(0)] ≡

∫

Dϕa(ηf )

∫

D′′ϕaD χb ×

exp

{

i

∫ ηf

0
dη χa(δab∂η + Ωab)ϕb − eη γabcχaϕbϕc + Jaϕa +Kaχa

}

Averaging the probabilities over the initial conditions with a statistical weight function for the
physical fields ϕa(0),

Z[Ja, Kb; C
′s] =

∫

Dϕa(0)W [ϕa(0), C
′s]Z[Ja, Kb; ϕa(0)] .

Gaussian initial conditions, the weight function reduces to the form

W [ϕa(0), Cab] = exp
{

−
1
2
ϕa(k, 0)Cab(k)ϕb(−k, 0)

}

,

where
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Feynman diagrams and all that . . .

Pab

2

Tree level diagrams

Propagator - linear evolution

Power spectrum - initial
conditions

Vertex - nonlinearities

Loop corrections to power spec-
trum
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Does it work?

Propagator in large-k limit

g
ab

k k k k

Gab(k; ηa, ηb) = gab(ηa, ηb)
[

1− k2σ2 (eηa−eηb )2

2

]

+O(k4σ4)

(

σ ≡
1

3

∫

d3q
P 0(q)

q2

)

(σeηa)−1 ≃ 0.15hMpc−1, in the BAO range

PT blows up in the BAO range
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Renormalized perturbation theory

Different contributions can be resumed

Gab(k, η) = gab(η) exp
(

−k2σ2
v(exp(η)− 1)2/2

)

Exponential damping in the BAO
range

Represents the effect of multiple
interactions

Memory loss
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Results

Results from PT using Zel’dovich
approximation

Fine cancellation between different loop
orders

Results from PT using field
theory methods

Clearly improved results
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Matter power spectra

RPT, one loop, linear, simulations, halo
approach

RG equations for propagator and PS can be
written down

Result of using the RG for propagator and PS

RG for propagator

∂λ
∂2Wλ

∂Ja(k,ηa)∂Kb(k,ηa)
= −δ(k+ k′)∂λGab,λ(k, ηa, ηb)

Suppression of PS from RG at k ∼

0.25hMpc−1 due to failure of analytical approx-
imations
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Matter power spectra

RPT, one loop, linear, simulations, halo
approach

RG equations for propagator and PS can be
written down

Result of using the RG for propagator and PS

RG for propagator

∂λ
∂2Wλ

∂Ja(k,ηa)∂Kb(k,ηa)
= −δ(k+ k′)∂λGab,λ(k, ηa, ηb)

Suppression of PS from RG at k ∼

0.25hMpc−1 due to failure of analytical approx-
imations

What we want: Matter power spectrum.
What we observe: Galaxies
Is that the same?
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Tracing the matter with galaxies - bias

Does absence of light mean absence of land?

Galaxies do not trace dark matter distribution in general
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Tracing the matter with galaxies - bias

APM galaxy survey
Mass correlation function
Different cosmologies
Bias in general non-linear and local

Virgo, consortium, 98,
arXiv:astro-ph/970901
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Chasing the bias - can we do it?
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Chasing the bias - can we do it?
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Chasing the bias - can we do it?

Galaxies live in dark matter haloes

Haloes themselves are biased against the background matter field

Understand halo bias as a first step to understand galaxy bias

Halo power spectrum suffers from the issue of shot noise.

Shot noise, break down of the fluid assumption for discrete lumps of haloes

Should predict/calculate the halo power spectrum, but we calculate the cross-power
spectrum to avoid dealing with shot noise.

Question: Given initial model of halo bias, can we predict it’s evolution?
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Formalism

Final haloes can be traced to their initial position (proto-haloes)

proto-haloes are conserved

Follow the evolution of center of mass of proto-haloes
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Formalism

∂δh

∂τ
+∇ · [(1 + δh)v] = 0 Proto-haloes are conserved

∂v

∂τ
+Hv+ (v · ∇)v = −∇φ

∇2φ =
3

2
ΩmHδ

Haloes identified at z = 0, traced back to initial position - called proto haloes
Extension of the previous formalism to three fluid system

Ω =









1 −1 0

−3/2 3/2 0

0 −1 1









γ121(k, p, q) =
1

2
δD(k+ p+ q)α(p,q) ,

γ121(k, p, q) = γ112(k, q, p) ,

γ222(k, p, q) = δD(k+ p+ q)β(p,q) ,

γ323(k, p, q) = γ332(k, q, p) = γ121(k, p, q)

Initial halo-halo and matter-halo (cross) power spectrum fitted via
P33(k) = (b1 + b2 · k2)2P11(k) exp(−k2R2)

P13(k) = (b1 + b2 · k2)P11(k) exp(−k2R2/2)
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Initial conditions

10243 dark-matter particles within a periodic cubic box Lbox = 1200h1 Mpc

ΛCDM model, Gaussian initial conditions and cosmological parameters:
h = 0.701, σ8 = 0.817, ns = 0.96,Ωm = 0.279,Ωb = 0.0462,ΩΛ = 0.721

Assume initial relation between halo and matter fluctuations as
δh(k) = (b1 + b2 · k2)δm(k)

Fit initial power spectrum using above relations and follow the evolution

Analysis for four different mass bins:

Bin Mass range

(1013M⊙/h)

Bin 1 1.24− 1.8

Bin 2 1.8− 3.4

Bin 3 3.4− 10

Bin 4 > 10

Note: Huge haloes in fourth bin
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Results - cross PS at z = 0

Simulations, linear, 1-loop, RPT

Zero the initial bispectra

First three bins, linear theory
overpredicts the power on mildly
non-linear scales

One-loop power spectrum
corrects only on very large scale

Renormalization corrects it up to
a smaller scale, before starting to
fail

The fourth bin, everything fails

Very massive haloes are large
and rare in the initial conditions,
therefore less suited for the fluid
approximation.
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Results - bias

b ≡ Pmh/Pm

Simulations, linear, 1-loop, RPT

In linear-theory - bias always
increases with scale

Renormalized theory follows the
scale dependence of b(k)

Nearly constant bias for the third
bin

Linear model performs better in
the last bin
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Conclusions

Understanding results of current generation galaxy surveys demmands understanding of
perturbations on non-linear scales

Predicting power spectrum with the help of field theory helps thoeoretical understanding of
evolution

Renormalized perturbation thoery improves the predictions in the regions interested for BAO

Bias is one of the major issues in connecting observed parameters to thoeretical predictions

The current RPT apporach can be extended to include haloes as fluids and predicts
evolution of bias

Renormalized perturbation theory can help connecting observables to theoretical predictions
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