THERMAL AND MAGNETIC STRESS IN THE HORN: STATIC CASE

Benjamin Lepers IPHC Strasbourg

January 6, 2011

Benjamin Lepers

Euronu meeting

January 6, 2011 1 / 16

- Model: electrical/resistive heating, Magnetic field/magnetic pressure, Temperature field/ thermal stress
- Material properties: electrical and thermal conductivity function of temperature
- Magnetic stress
- Thermal stress
- Total stress
- Fatigue limit
- Total stress with increased cooling or thickness.
- Conclusion

COUPLED PHYSICS MODELS

Model	Equation	Input	BC	Output
AC/DC	$j\omega\mu\mathbf{H} + \frac{1}{\sigma + i\omega\epsilon}\nabla \times [\nabla \times \mathbf{H}] = 0$	$H_{0\phi} = \frac{l_{rms}}{2\pi r}$	$\mathbf{n} \times \mathbf{E} = 0 \Leftrightarrow H_n = 0$	J, B
	$\sigma = \sigma(T)$			Qav _{emqh}
Thermal	$\nabla \cdot [k \nabla T] + q = 0$	$q = Q_{beam} + Qav_{emqh}$	$q'' = \bar{h}[T - T_{\infty}]$	Т
	k = k(T)			
Mechanical	$\frac{\partial \sigma_{f}}{\partial t} + \frac{\partial \tau_{fZ}}{\partial z} + \frac{\sigma_{r} - \sigma_{\theta}}{t} + F_{r} = 0$	$dF_r = -Re(B_\phi) \times Re(J_z)$	$u_r(r=0)=0$	u
	$\frac{\partial \tau_{IZ}}{\partial r} + \frac{\partial \sigma_Z}{\partial z} + \frac{\tau_{IZ}}{r} + F_Z = 0$	$dF_z = Re(J_r) \times Re(B_{\phi})$	$u_{plates}(z=0)=0$	s
linear elast	$ec{\sigma} = \mathbf{E}ec{\epsilon}$	$\Leftrightarrow p(r) = \frac{\mu l_0^2}{8\pi^2 r^2}$		
Mechanical	idem	idem	idem	u _{tot}
& thermal	$\vec{\epsilon} = \vec{\epsilon_{el}} + \vec{\epsilon_{th}}$	α, T	$T_{ini} = T_{ref}$	s _{tot}
	$\epsilon_{th} = \mathbf{I}\alpha(T - T_{ref})$			

- $I_0 = 350 kA$, $I_{rms} = 8750 A$. To model total stress, assume a magnetic pressure corresponding to peak current I_0 .
- $Q_{beam} = 55kA$ deposited in the Beryllium target of length L = 0.78m and radius R = 15 mm.(obtain with Fluka).
- Cooling: $\{h_{target}, h_{horn}\} = \{10 20, 1 2\} kW/(m^2K)$
- non linear because both electrical and thermal conductivity are temperature dependant.
- axisymmetric model: all variables are function of r and z.

MATERIAL PROPERTIES

- Model 1: constant electrical and thermal conductivity for AI and Be
- Model 2: Temperature dependant electrical and thermal conductivity for Al and Be

Benjamin Lepers

RESISTIVE LOSSES

	Q[kW]	tot	1+1"	2	3	4	5 + 6	7	8	9
•	$\sigma = \sigma_0$	27	14	2.5	1.0	2.6	4.1	1.3	0.23	1.4
	$\sigma = \sigma(T)$	37	20.8	2.7	1.0	2.9	6.5	1.3	0.23	1.5

- Total electrical loss are 37% higher than the one calculated with constant electrical conductivity
- Most electrical losses came from the inner conductor, conical sections and top end of the horn.
- q_{elec} = ^ℓ/₂J², the resistivity increased with temperature, ⇒ essential to maintain the inner conductor at low temperature.

Benjamin Lepers

Euronu meeting

MAGNETIC FLUX DISTRIBUTION

FIGURE: Magnetic flux distribution

FIGURE: Radial magnetic flux distribution, analytic and model

Benjamin Lepers

Euronu meeting

January 6, 2011 6 / 16

TEMPERATURE FIELD, $\sigma(T)$, k(T)

FIGURE: Target and horn, T_{max} is 332 °C, $h_{target} = 10kW/m^2K$, $h_{horn} = 1kW/m^2K$

FIGURE: Top end of the horn, T_{max} is 332 °C, $h_{target} = 10kW/m^2K$, $h_{horn} = 1kW/m^2K$

TEMPERATURE FIELD, $\sigma(T)$, k(T)

FIGURE: Target and horn, T_{max} is 226 °C, $h_{target} = 20kW/m^2K$, $h_{horn} = 2kW/m^2K$ FIGURE: Top end of the horn, T_{max} is 226 °C, $h_{target} = 20kW/m^2K$, $h_{horn} = 2kW/m^2K$

DISPLACEMENT FIELD, $\sigma(T)$, k(T)

FIGURE: Displacement due to magnetic pressure, t = 3 mm $U_{max} = 22$ mm

FIGURE: Displacement due to magnetic pressure and thermal dilatation, $t = 3 \text{ mm } U_{max} = 25 \text{ mm}$

DISPLACEMENT FIELD, $\sigma(T)$, k(T)

FIGURE: Total displacement due to magnetic pressure, $t = 5 \text{ mm } U_{max} = 5.6 \text{ mm}$

FIGURE: Displacement due to magnetic pressure and thermal dilatation, $t = 5 U_{max} = 7.2 \text{ mm}$

Stress target, t = 3 mm

FIGURE: Stress, magnetic; t = 3 mm

FIGURE: Stress, magnetic + thermal; t = 3 mm

Stress target, t = 5 mm

300 Sphi Sy 200 100 Stress(Mpa) -100 -200 -300 -400 14 16 0 4 10 12 18 r [mm]

FIGURE: Stress, magnetic; t = 5 mm

FIGURE: Stress, magnetic + thermal; t = 5 mm

STRESS HORN

FIGURE: Mises stress, magnetic + thermal; t = 3 mm

FIGURE: Mises stress, magnetic + thermal; t = 5 mm

Benjamin Lepers

Euronu meeting

January 6, 2011 13 / 16

- N = 8E8: total number of pulses
- 4 horns: $\frac{N}{4}$ pulses per horn at frequency 12.5 Hz.
- $\tau = \frac{N}{f} = 16 \times 10^6 \mathrm{s}$, \sim 6 months continuously
- Al: no fatigue limit, properties degrading as N increased.
- technical design for MiniBooNe: recommend stress below 68 Mpa for Al 6061-T6
- Need study on irradiation effect on materials and lifetime.
- Effect of water on lifetime ?

- high stress level in the target
- need very efficient cooling, Miniboone h ~ 3kW/m²K, need h ~ 20kW/m²K if integrated.
- frame with cooling system.