The $3^{\text {rd }}$ generation quarks in warped models : LHC predictions from LEP/Tevatron anomalies

G. Moreau

Laboratoire de Physique Théorique, Orsay, France

From
A.Djouadi, G.M., F.Richard, R.Singh PRD 2010

+ work in progress..

PLAN

I) Introduction: a warped model

II) $A_{\text {FB }}$ and tt cross section @ Tevatron
III) $A^{b}{ }_{F B}$ and EW precision tests @ LEP
IV) Constraints and predictions @ LHC
V) Conclusions

I) Introduction: a warped model

The Randall-Sundrum (RS) scenario with bulk fields:

- RS addresses the gauge hierarchy:

$$
M_{g r a v} \approx T e V \approx Q_{E W}
$$

Randall, Sundrum (1999)

- RS generates the mass hierarchies: $m_{e} \ll m_{t}$
Gherghetta, Pomarol (2000)
Planck-brane TeV -brane
+ other attractive features of the RS scenario:
- WIMP candidates for the dark matter of universe: a LKP stable due to a possible KK-parity (like in UED)
- Unification of gauge couplings (as in ADD) at high-energies
- Fermion mixing angles and flavor structure (as in ADD) \neq in SUSY
- Extra-Dimensions = necessary ingredients for higher-energy string theories

AdS / CFT correspondance (98') :

WARPED H-DIM. SCENARIOS / STRONGLY COUPLED MODELS

5D holographic version	RS with bulk fields	gauge-Higgs unification	Higgsless models
4D dual interpretation	composite Higgs boson	composite Higgs pseudo- Goldstone boson of a global symmetry	technicolor models
(as for little Higgs with T parity)			

The EW precision constraints in the warped models:

Bulk gauge bosons/fermions mix with their KK excitations => tree-level contributions to EW observables

Ways out to respect the constraints from EW precision data for $\mathrm{M}_{\mathrm{KK}} \sim \mathrm{TeV}$:
\sim Gauge custodial symmetry in the bulk

$O(4)$	$S U(2)_{L} \times S U(2)_{R}$
\Downarrow	\approx
$\Downarrow(3)$	$S U(2)_{V} \times P_{L R}$

Agashe, Delgado, May, Sundrum (2003)
~> Brane-localized kinetic terms for fermions/gauge fields
Carena et al. (2002) Aguila et al. (2003)
~> Modification of the AdS metric in the vicinity of the IR brane Cabrer, Gersdorff, Quiros (2010)

We consider the quark representations under $\operatorname{SU}(2)_{L} \times S U(2)_{R} \times U(1)_{x}$:

$$
\left(\begin{array}{ccc}
t_{1 L} & b_{L}^{\prime} & q_{-4 / 3 L}^{\prime} \\
b_{1 L} & q_{-4 / 3 L}^{\prime \prime} & q_{-7 / 3 L}^{\prime}
\end{array}\right)_{-5 / 6}\binom{t_{2 L}}{b_{2 L}}_{1 / 6} \quad\left(\begin{array}{ccc}
b_{R} & \left.q_{-4 / 3 R}^{\prime}\right)_{-5 / 6} & \left(t_{R}\right.
\end{array} b_{R}^{\prime}\right)_{1 / 6}
$$

$$
\begin{aligned}
S U(2)_{R} \longrightarrow & U(1)_{R} \\
& U(1)_{R} \times U(1)_{x} \\
& \longrightarrow U(1)_{Y} \\
& W_{R}{ }^{3} \quad B_{X} \longrightarrow B_{Y} \quad\left(+Z^{\prime}{ }^{\text {KK }}\right)
\end{aligned}
$$

Z^{\prime} charges ($\mathrm{I}_{3 \mathrm{R}}$ isospin) and coupling $\left(\mathrm{g}_{\mathrm{z}} \sim 3\right)$
$=\quad$ Zbb couplings allowing to address $A^{\mathbf{b}}{ }_{\text {FB }}$

II) $A^{t}{ }_{F B}$ and tt cross section @ Tevatron

$A^{\mathrm{t}} \mathrm{FB}^{\text {at Tevatron }}$

«What is the Forward-Backward asymmetry for the top quark?»
$\neq 0$ with Parity-violating couplings

$A_{\mathrm{FB}}^{t}=\frac{\sigma^{F}-\sigma^{B}}{\sigma^{F}+\sigma^{B}}=\frac{\sigma\left[\cos \theta_{t}^{*}: 0 \rightarrow 1\right]-\sigma\left[\cos \theta_{t}^{*}:-1 \rightarrow 0\right]}{\sigma\left[\cos \theta_{t}^{*}: 0 \rightarrow 1\right]+\sigma\left[\cos \theta_{t}^{*}:-1 \rightarrow 0\right]}=\frac{\sigma\left[y_{t}>0\right]-\sigma\left[y_{t}<0\right]}{\sigma\left[y_{t}>0\right]+\sigma\left[y_{t}<0\right]}$
(tt rest frame)
Rapidity : $y_{t}=\frac{1}{2} \ln \left[\left(E+p_{z}\right) /\left(E-p_{z}\right)\right]=\Delta y / 2$
«How is $A^{t}{ }_{F B}$ measured at Tevatron in lepton+jet channels?»

$$
\Delta y=y_{t}-y_{\bar{t}} \quad y_{t}=\left(y_{t}-y_{\bar{t}}\right) / 2
$$

in the laboratory frame

$$
A_{\mathrm{FB}}^{t}=\frac{N(\Delta y>0)-N(\Delta y<0)}{N(\Delta y>0)+N(\Delta y<0)}=\frac{N\left(q \Delta y_{l h}>0\right)-N\left(q \Delta y_{l h}<0\right)}{N\left(q \Delta y_{l h}>0\right)+N\left(q \Delta y_{l h}<0\right)}
$$

Other asymmetries...

$$
A_{\mathrm{FB}}^{p \overline{\bar{p}}}=\frac{\sigma\left[y_{t}^{p \bar{p}}>0\right]-\sigma\left[y_{t}^{p \bar{p}}<0\right]}{\sigma\left[y_{t}^{p \bar{p}}>0\right]+\sigma\left[y_{t}^{p \bar{p}}<0\right]} \quad A_{\mathrm{C}}^{t}=\frac{\sigma_{t}\left[y_{t}>0\right]-\sigma_{\bar{t}}\left[y_{t}>0\right]}{\sigma_{t}\left[y_{t}>0\right]+\sigma_{\bar{t}}\left[y_{t}>0\right]} \quad A_{\mathrm{C}}^{t}=A_{\mathrm{FB}}^{t}=>C P
$$

Standard Model (QCD) contribution to $\mathrm{A}_{\mathrm{FB}}^{\mathrm{t}}$

$$
A_{\mathrm{FB}}^{S M}=\frac{\sigma_{S M-N L O}^{F}-\sigma_{S M-N L O}^{B}}{\sigma_{S M-N L O}^{F}+\sigma_{S M-N L O}^{B}}
$$

(vanishing at LO)

MCFM for SM ($m_{t}=172.5 \mathrm{GeV}, P D F=C T E Q$) @ NLO : $\mathbf{A}_{\mathrm{FB}}^{\mathrm{t}}=\mathbf{0 . 0 5 8 + / - 0 . 0 0 9}$
Ahrens et al. (2010) obtain ($m_{t}=173.1 \mathrm{GeV}, P D F=M S T W$) :

$$
0.2<\mu_{f} / \mathrm{TeV}<0.8
$$

@ $\mathrm{NLO}: \mathrm{A}_{\mathrm{FB}}=0.067^{+0.006}{ }_{-0.004}$
@ NNLO-approx : $A_{\text {FB }}^{t}=0.064{ }^{+0.009}{ }_{-0.007}$
$=>A_{F B}^{t}\left[M_{t t}>450 \mathrm{GeV}\right]$ anomaly probably not fully explained by QCD errors ~ 0.01

Measurements of $A_{F B}^{t}$ at Tevatron

now $5.1 \mathrm{fb}^{-1}$: see F.Badaud's talk
07-2010 D0 in the lepton+jets channel with ($0.9 \mathrm{fb}^{-1}$ then) $4.3 \mathrm{fb}^{-1}$ (ttbar frame, not unfolded $=$ no subtracting bckgrd \& effic. + no ttbar level) :
$A_{F B}^{t}=0.08+/-0.04+/-0.01 \quad$ (+1.7 sigma from SM prediction)
03-2009 CDF in the lepton+jets channel with ($1.9 \mathrm{fb}^{-1}$ then) $3.1 \mathrm{fb}^{-1}$ (lab frame, unfolded) :
$A_{F B}^{t}=0.193+/-0.065+/-0.024$
(+2.1 sigma from SM prediction)
01-2011 CDF in the dilepton channel with $5.1 \mathrm{fb}^{-1}$
(lab frame, unfolded) :
$A_{F B}^{t}=0.42+/-0.15+/-0.05$
(+2.3 sigma from SM prediction)
(large error => +1.7 sigma from lept.+jets channel)
(lab frame, not unfolded) :
$A_{F B}^{\mathrm{t}}\left(\mathrm{M}_{\mathrm{tt}}<450 \mathrm{GeV}\right)=0.104+/-0.066$
(+1.6 sigma from SM prediction)
$A_{F B}^{t}\left(M_{t t}>450 G e V\right)=0.212+/-0.096$
(+2.6 sigma from SM prediction)
the data we use cause: most recent, unfolded and the only ones on rapidity dependence
01-2011 CDF in the lepton+jets channel with $5.3 \mathrm{fb}^{-1}$ (ttbar frame, unfolded) :

$$
\mathrm{A}_{\mathrm{FB}}^{\mathrm{t}}=0.158+/-0.075
$$

(+1.3 sigma from SM prediction)

(ttbar frame)
unfolding

+1.9 standard deviation from SM

(ttbar frame, unfolded)

$$
A_{\mathrm{FB}}^{|\Delta y|<1}=\frac{N(1>\Delta y>0)-N(-1<\Delta y<0)}{N(1>\Delta y>0)+N(-1<\Delta y<0)}, \quad A_{\mathrm{FB}}^{|\Delta y|>1}=\frac{N(\Delta y>1)-N(\Delta y<-1)}{N(\Delta y>1)+N(\Delta y<-1)}
$$

$$
|\Delta y|<3
$$

$A_{F B}^{t}$ in the studied warped model

+ interferences with SM
(neglect EW gauge contrib. at a first level)

$A_{F B}^{t}$ in the studied warped model

+ interferences with SM
(neglect EW gauge contrib. at a first level)

We will show that EW fits are OK for : $c_{-} u / d_{L} \sim 0.43, c_{2} u / d_{R} \sim 0.8, c_{C} c / s_{L} \sim 0.6, c_{-} c_{R} \sim 0.6$, $c_{-} s_{R} \sim 0.51, c_{-} t / b_{L} \sim 0.5, c_{-} b_{R} \sim 0.55, c_{-} t_{R} \sim-0.5$

The way to compute it...

$$
\begin{aligned}
A_{\mathrm{FB}}^{t} & =\frac{\left(\sigma_{S M}^{F}+\sigma_{R S}^{F}+\sigma_{\text {inter. }}^{F}\right)-\left(\sigma_{S M}^{B}+\sigma_{R S}^{B}+\sigma_{\text {inter. }}^{B}\right)}{\left(\sigma_{S M}^{F}+\sigma_{R S}^{F}+\sigma_{\text {inter. }}^{F}\right)+\left(\sigma_{S M}^{B}+\sigma_{R S}^{B}+\sigma_{\text {inter. }}^{B}\right)} \\
& \Leftrightarrow \quad A_{\mathrm{FB}}^{t}=A_{\mathrm{FB}}^{R S} \times R+A_{\mathrm{FB}}^{S M} \times(1-R)
\end{aligned}
$$

Cao et al. (2010)

$$
\text { with }\left\{\begin{array}{l}
A_{\mathrm{FB}}^{R S}=\frac{\left(\sigma_{R S-L O}^{F}+\sigma_{\text {inter. }-L O}^{F}\right)-\left(\sigma_{R S-L O}^{B}+\sigma_{\text {inter. }-L O}^{B}\right)}{\left(\sigma_{R S-L O}^{F}+\sigma_{\text {inter. }-L O}^{F}\right)+\left(\sigma_{R S-L O}^{B}+\sigma_{\text {inter. }-L O}^{B}\right)} \\
R=\frac{\sigma_{R S-L O}^{\text {total }}+\sigma_{\text {inter. }-L O}^{\text {total }}}{\sigma_{S M-L O}^{\text {total }}+\sigma_{R S-L O}^{\text {total }}+\sigma_{\text {inter. }-L O}^{\text {total }}}
\end{array}\right.
$$

ex: $\quad \sigma_{R S-L O}^{F}=\sigma_{R S-L O}\left[\cos \theta_{t}^{*}: 0 \rightarrow 1\right]=$

$$
\sum_{i j} \int_{\tau_{\min }}^{\tau_{\max }} d \tau\left[\int_{0}^{1} d \cos \theta_{t}^{*}\left(\frac{\mathrm{~d} \hat{\sigma}_{R S-L O}}{\mathrm{~d} \cos \theta_{t}^{*}}(\tau s)\right)_{i j}\right]\left\{\int_{\tau}^{1} \frac{d x}{x} f_{i}\left(x, \mu_{f}\right) f_{j}\left(\frac{\tau}{x}, \mu_{f}\right)\right\}
$$

$$
\tau_{\min / \max }=\hat{s}_{\min / \max } / \mathrm{s}
$$

It is instructive to write down the asymmetry at a partonic level (neglecting $2^{\text {nd }} / 3^{\text {rd }}$ generations and gluons in initial state)...

Full asymmetry after convolution with PDF...
(ttbar frame)

$\mu_{f}=\mu_{r}=m_{t}=172.5 \mathrm{GeV}$

Looking at the effect of MSTW uncertainties [@ 90\%C.L.]...
(ttbar frame)

$\mathrm{M}_{\mathrm{tt}}=450 \mathrm{GeV} \quad$ no significant dependence as well on $\boldsymbol{\mu}_{f}, \boldsymbol{\mu}_{r}$ and m_{t}

Full asymmetry as a function of rapidity...
(ttbar frame)

One must take care of the differential tt production cross section in good agreement with the SM...
$\frac{\mathrm{d} \sigma_{S M-N N L O}}{\mathrm{~d} M_{t \bar{t}}}\left(1+\frac{\mathrm{d} \sigma_{R S+\text { inter. }-L O}}{\mathrm{~d} M_{t \bar{t}}} / \frac{\mathrm{d} \sigma_{S M .-L O}}{\mathrm{~d} M_{t \bar{t}}}\right)$
$-1.65 \sigma \quad-1.38 \sigma$

In SM :
$\chi^{2} /$ d.o.f. $=6.85 / 8$
In RS :
$\chi^{2} /$ d.o.f. $=5.08 / 8$

$$
\begin{aligned}
m_{t} & =175 \mathrm{GeV} \\
\mu_{f} & =\mu_{r}=m_{t}
\end{aligned}
$$

What about the whole integrated top quark asymmetry and cross section?

| Observable | Measurement | SM [QCD-(N)NLO] | SM (dev.) | RS+SM | RS+SM (dev. | RS+SM w.r.t. SM (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{F B}^{t}$ | 0.158 ± 0.075 | 0.058 ± 0.009 | -1.33σ | 0.169 | $+0.15(7) \sigma$ | $+192.8 \%$ |
| $\sigma_{t \bar{t}}$ | $7.50 \pm 0.48 \mathrm{pb}$ | $7.46 \mathrm{pb}[20]$ | -0.08σ | 6.86 pb | -1.33σ | -8.0% |
| $\sigma_{t \bar{t}}$ | $7.50 \pm 0.48 \mathrm{pb}$ | $7.29 \mathrm{pb}[21]$ | -0.43σ | 6.70 pb | -1.65σ | -8.0% |
| $\sigma_{t \bar{t}}$ | $7.50 \pm 0.48 \mathrm{pb}$ | $7.26 \mathrm{pb}[22]$ | -0.5σ | 6.68 pb | -1.71σ | -8.0% |

$\mu_{f}=\mu_{r}=m_{t}$
 Observable Measurement SM [QCD-(N)NLO] SM (dev.) RS+SM RS+SM (dev. RS+SM w.r.t. SM (\%) $A_{F B}^{t}$ 0.158 ± 0.075 0.058 ± 0.009 -1.33σ 0.169 $+0.15(9) \sigma$ $+193.0 \%$ $\sigma_{t \bar{t}}$ $7.50 \pm 0.48 \mathrm{pb}$ $7.61 \mathrm{pb}[20]$ $+0.24 \sigma$ 7.00 pb -1.04σ -8.1% $\sigma_{t \bar{t}}$ $7.50 \pm 0.48 \mathrm{pb}$ $7.44 \mathrm{pb}[21]$ -0.11σ 6.84 pb -1.37σ -8.1% $\sigma_{t \bar{t}}$ $7.50 \pm 0.48 \mathrm{pb}$ $7.41 \mathrm{pb}[22]$ -0.18σ 6.81 pb -1.43σ -8.1%

[20] Langenfeld et al. (2009)
[21] Kidonakis et al. (2008)
[22] Cacciari et al. (2008)

$$
m_{t}=172.5 \mathrm{GeV}
$$

III) $A^{b}{ }_{F B}$ and EW precision tests @ LEP

Interpretation in a generic extra-dimensional model... (difficult in SUSY)

$$
\left|\delta Q_{Z}^{f_{l}}\right| \approx 1 \% \ll\left|\delta Q_{Z}^{b}{ }^{L / R}\right| \approx|-1.5 / 30 \%|
$$

$$
\mathrm{m}_{b^{\prime}}\left(\mathrm{c}_{\mathrm{t}_{\mathrm{R}}}\right) \ll \mathrm{m}_{f^{\prime}}\left(\mathrm{c}_{\text {light }}\right)
$$

Coupling $Z_{\text {КК }} f_{l} \overline{f_{l}} \ll$ Coupling $Z_{К К} b \bar{b}$

$$
\mathrm{m}_{\mathrm{t}}\left(\mathrm{c}_{\mathrm{t}_{\mathrm{R}}}\right) \uparrow \Rightarrow \mathrm{m}_{b^{\prime}}\left(\mathrm{c}_{\mathrm{t}_{\mathrm{R}}}\right) \downarrow
$$

\Downarrow
\Downarrow

Summary of the EW observables...

Observable	SM	RS
no more A $_{\text {bB }}$ anomaly		
at the Z^{0} pole		
$A_{F B}^{b}\left(m_{Z}\right)$	2.7σ	1.4σ
R_{b}	0.8σ	1.1σ
$A_{F B}^{c}\left(m_{Z}\right)$	0.9σ	0.7σ
R_{c}	0.0σ	0.5σ
$A_{F B}^{s}\left(m_{Z}\right)$	0.6σ	0.1σ
$\Gamma_{\text {had }}(Z)$	1.3σ	0.8σ
$\Gamma_{\text {tot }}(W)$	0.2σ	0.2σ
$\sigma_{\text {had }}$	1.5σ	1.6σ
$\left\langle Q_{F B}\right\rangle$	1.1σ	0.1σ
$C_{1 u}+C_{1 d}$	0.2σ	0.9σ
$C_{1 u}-C_{1 d}$	1.1σ	0.1σ
$\chi^{2} /$ d.o.f.	$27.5 / 18$	$22.0 / 18$

+ Zuu/Zdd OK from Tevatron Run I \& HERA (H1,ZEUS)

IV) Constraints and predictions @ LHC

Constraint from tt cross section $\sigma_{t \bar{t}}$

$$
\begin{array}{r}
\mathcal{L}=35 \mathrm{pb}^{-1} \\
36 \mathrm{pb}^{-1}
\end{array}
$$

Collaboration	Measurement	SM [QCD-(N)NLO]	SM (dev.)	RS+SM (dev.)
ATLAS	$180 \pm 18.5 \mathrm{pb}$	$164 \mathrm{pb}[35]$	-0.86σ	-0.88σ
ATLAS	$180 \pm 18.5 \mathrm{pb}$	$163 \mathrm{pb}[21]$	-0.91σ	-0.94σ
ATLAS	$180 \pm 18.5 \mathrm{pb}$	$155 \mathrm{pb}[24]$	-1.35σ	-1.37σ
CMS	$158 \pm 19 \mathrm{pb}$	$164 \mathrm{pb}[35]$	$+0.31 \sigma$	$+0.29 \sigma$
CMS	$158 \pm 19 \mathrm{pb}$	$163 \mathrm{pb}[21]$	$+0.26 \sigma$	$+0.24 \sigma$
CMS	$158 \pm 19 \mathrm{pb}$	$155 \mathrm{pb}[24]$	-0.15σ	-0.17σ

[35] HATHOR program (2011)
[21] Kidonakis et al. (2011)
[24] Ahrens et al. (2009)
major $g g$ initial state

$$
\mu_{f}=\mu_{r}=m_{t}=173 \mathrm{GeV}
$$

Constraints from dijets

What does the RS model predicts at the expected luminosity of $1 \mathrm{fb}^{-1}$?

$\Gamma_{K K} / M_{K K} \simeq 832 \mathrm{GeV} / 1500 \mathrm{GeV} \simeq 0.55$
\longrightarrow integration of the cross section e.g. over [1050, 1750] GeV
$\longrightarrow($ Signal - Background $) / \sqrt{\text { Background }} \simeq 5($ with Signal $=R S+S M)$
An excess should be visible.. ..for $\quad \mu_{f}=\mu_{r}=m_{t}=173 \mathrm{GeV}$

The predicted $\mathfrak{t} \bar{t}$ excess due to KK gluon is observable but not 'spectacular'

the pair production of $\sim 10^{2} \mathrm{GeV}$ colored fermions [" custodian » b'] might be (in particular due to the increase factor induced by : $q \bar{q} \rightarrow g^{(1)} \rightarrow b^{\prime} \bar{b}^{\prime}$).

Let's assume now a slightly different scenario solving $A^{b}{ }_{F B}, A_{F B}^{t}$ as we showed but without custodian effects at present colliders :
\checkmark heavy custodians (by mixing with higher KK states, in a multiplet with larger c value, coupled to Planckian/bulk masses, ...)

『 custodial symmetry implemented à la Mohapatra i.e. without new fermions, e.g. with (t_{R}, b_{R}), thanks to more structured Higgs sector
§ without custodial symmetry: EWPT protected by brane-kinetic terms or modified geometrical background and $\mathrm{A}_{\mathrm{FB}}^{\mathrm{b}}$ curred by Z^{KK}.

Without b' like fermion, the RS model predicts a nice $g^{(1)}$ resonant peak...

assuming 100 GeV bin resolutions
Smaller total KK gluon width cause no more channel $\mathrm{g}^{(1)} \rightarrow \mathrm{b}^{\prime} \bar{b}^{\prime}$:

$$
\Gamma_{K K} / M_{K K} \simeq 416 \mathrm{GeV} / 1500 \mathrm{GeV} \simeq 0.27
$$

A clean resonance shape is predicted...

V) Conclusions

The 'warped paradigm', with theoretical motivations, predicts deviations from $S M$ in the $3^{\text {rd }}$ generation sector $=>A^{b}{ }_{F B}, A_{F B}^{t}=$ early indications ?

We suggest a geometrical $R S$ realization addressing both A^{b} FB and $A_{F B}^{t}$.
The several constraints on the parameter space render this RS scenario quite predictive on the effects in the tt invariant mass ditribution @ LHC.

This RS framework addressing $A_{F B}^{t}$ reflects a more generic 'no-lose' thm in the phenomenology of warped models : a clear signature is expected @ LHC either from KK gluon resonances or from custodian productions.

One must wait for more data (Tevatron,LHC) in order to discriminate between the main $A_{F B}^{t}$ interpretations: Z / W^{\prime}, KK gluon, Axigluon,...

Back up

Some useful formula's...

$$
\begin{gathered}
\cos \theta_{t}^{*}=\sqrt{1+\frac{4 m_{t}^{2}}{\hat{s}-4 m_{t}^{2}}} \tanh y_{t} \\
\frac{1}{\mathcal{D}}=\hat{s}-M_{K K}^{2}+i \frac{\hat{s}}{M_{K K}^{2}} \sum_{q} \Gamma_{K K}^{g^{(1)} \rightarrow q \bar{q}} M_{K K} \frac{\beta_{q}\left[v_{q}^{2}\left(3-\beta_{q}^{2}\right)\right] / 2+a_{q}^{2} \beta_{q}^{2}}{v_{q}^{2}+a_{q}^{2}} \\
\beta_{t}=\sqrt{1-4 m_{t}^{2} / \hat{s}} \\
\sqrt{\hat{s}_{0}} \simeq \frac{M_{K K}}{\left(1+\Gamma_{K K}^{2} / M_{K K}^{2}\right)^{1 / 4}}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\mathrm{d} \hat{\sigma}_{R S-L O}}{\mathrm{~d} \cos \theta_{t}^{*}}(\hat{s})=\frac{\pi \alpha_{s}^{2}\left(\mu_{r}\right) \beta_{t}}{9 \hat{s}} \times \\
& \hat{s}^{2}|\mathcal{D}|^{2}\left[8 v_{q} v_{t} a_{q} a_{t} \beta_{t} \cos \theta^{*}+\left(a_{q}^{2}+v_{q}^{2}\right)\left(v_{t}^{2}\left(2-\beta_{t}^{2} \sin ^{2} \theta^{*}\right)+a_{t}^{2} \beta_{t}^{2}\left(1+\cos ^{2} \theta^{*}\right)\right)\right]
\end{aligned}
$$

$$
\frac{\mathrm{d} \hat{\sigma}_{\text {inter. }-L O}}{\mathrm{~d} \cos \theta_{t}^{*}}(\hat{s})=\frac{\pi \alpha_{s}^{2}\left(\mu_{r}\right) \beta_{t}}{9 \hat{s}} 4 \hat{s} \operatorname{Re}(\mathcal{D})\left[v_{q} v_{t}\left(1-\frac{1}{2} \beta_{t}^{2} \sin ^{2} \theta^{*}\right)+a_{q} a_{t} \beta_{t} \cos \theta^{*}\right]
$$

$$
\left(\left.\frac{\mathrm{d} \hat{\sigma}_{S M-L O}}{\mathrm{~d} \cos \theta_{t}^{*}}(\hat{s})\right|_{q \bar{q}}=\frac{\pi \alpha_{s}^{2}\left(\mu_{r}\right) \beta_{t}}{9 \hat{s}}\left\{2-\beta_{t}^{2} \sin ^{2} \theta^{*}\right\}\right)
$$

Global $\mathrm{A}_{\mathrm{FB}}^{\mathrm{b}}$ fit @ and off the Z pôle :

SM: $\chi^{2}=24 \quad \mathrm{RSa}: \chi^{2}=20 \quad \mathrm{RSb}: \chi^{2}=14$
b_{R} under $S U(2)_{L} \times S U(2)_{R} \times U(1)_{X}:\left\{\begin{array}{l}Q_{X}=(B-L) / 2 \Rightarrow I_{R}^{3}=-1 / 2 \mathrm{RSa} \\ Q_{X}=-5 / 6 \Rightarrow I_{R}^{3}=+1 / 2\end{array}\right.$ RSb

Improved goodness-of-fit

EW observables are expressed in terms of oblique parameters encoding the New Physics...

$$
S_{\mathrm{RS}} \simeq 2 \pi\left(\frac{2.4 v}{M_{K K}}\right)^{2} \quad T_{\mathrm{RS}} \simeq k \pi^{2} R_{c} \frac{\tilde{g}^{2}}{8 e^{2}} \frac{\tilde{M}^{2}}{k^{2}}\left(\frac{2.4 v}{M_{K K}}\right)^{2}
$$

p-value $10.3 \% \Leftrightarrow \chi^{2} / 11=1.56$

p-value $37.3 \% \Leftrightarrow \chi^{2} / 10=1.08$

Best-fit Higgs mass

t RS fit can be better for any $m_{h}>115 \mathrm{GeV}\left(\right.$ e.g. $\left.m_{h}=190 \mathrm{GeV}=>h->Z^{0} Z^{0}\right)$
t for $m_{h}=500 \mathrm{GeV}$ $\left\{\begin{array}{l}p \text {-value can be @ } 25.3 \% \text { in } R S \text { if } M_{K K}=4 \mathrm{TeV} \\ p \text {-value is only @ } 2.510^{-9} \text { in } \mathrm{SM} \\ \mathrm{m}_{\mathrm{h}} \text { excluded in gauge-Higgs unification \& SUSY }\end{array}\right.$ => the discovery of a heavy Higgs would constitute a sign for RS
t the best-fit m_{h} value is possibly larger than the LEP2 direct limit of 115 GeV
in contrast with the SM where the best-fit m_{h} is ${ }^{76-23} \mathrm{GeV}$ (getting even smaller by excluding A_{FB})

Better quality of fit in RS than in SM cause..
1)positive contribution $\mathrm{T}_{\text {RS }}$ (custodial symmetry breaking)
2)SM fit degraded by the $\sin ^{2}{ }^{\theta_{w}}$ measurement derived directly from $A^{b}{ }_{F B}$:

Problems/Solutions in the Higgs boson sector

a) Quantum instability of the Higgs mass: $\delta m_{h}^{2} \propto \Lambda_{N P}^{2}$
\rightarrow Supersymmetry (MSSM): $\delta m_{h}^{2} \approx \tilde{m}^{2} \approx\left(10^{2} \mathrm{GeV}\right)^{2}$ as no quadratic dvg.
\sim Extra Dimensions (ADD,RS): δm_{h}^{2} protected by $\Lambda_{N P}<M_{\text {grav }} \approx T e V$ (Higgsless): models without Higgs boson !
\sim Composite Higgs (MHCM): δm_{h}^{2} protected by $\Lambda_{N P}=\Lambda_{I R} \approx T e V$ [\& possibly till $\Lambda_{N P}$ via a global symmetry]
b) Quantum instability of the Higgs quartic coupling λ
\sim Supersymmetry (MSSM): SUSY $\Rightarrow \lambda=g^{2}$ protects λ
\sim Extra Dimensions (gauge-Higgs unif.): GAUGE SYM. $=>\lambda=g^{2}$ protects λ (Higgsless): no high-energy Higgs potential
c) EW Symmetry Breaking dynamics
~> Supersymmetry (mSUGRA): EWSB triggered by negative Higgs mass induced radiatively (via top quark loop)
~> Composite Higgs (MHCM): EWSB triggered by negative Higgs mass induced radiatively (via top quark loop)
~> Extra Dimensions (Higgsless): SB by field Boundary Conditions \& KK masses for fermions/bosons

So the main approaches towards the Higgs questions are SUSY or ED like

+ renew of interest for ED-type scenarios:
\int EXP. - no discovery of superpartners @ LEPII (nor Tevatron Run II)
TH. - AdS/CFT correspondance (98 ') => calculability of EW observables (03^{\prime}) in Composite Higgs scenarios (84')

