

IPN/Lyon - 20/04/2011

The 3rd generation quarks in warped models : *LHC predictions from LEP/Tevatron anomalies*

G. Moreau Laboratoire de Physique Théorique, Orsay, France

From

A.Djouadi, G.M., F.Richard, R.Singh **PRD 2010** + work in progress..

PLAN

I) Introduction: a warped model

II) A^t_{FB} and tt cross section @ Tevatron
 III) A^b_{FB} and EW precision tests @ LEP
 IV) Constraints and predictions @ LHC
 V) Conclusions

I) Introduction: a warped model

The Randall-Sundrum (RS) scenario with bulk fields:

• RS addresses the gauge hierarchy :

$$M_{grav} \approx TeV \approx Q_{EW}$$

Randall, Sundrum (1999)

RS generates the mass hierarchies :

 $m_e \ll m_t$

Gherghetta, Pomarol (2000)

Planck-brane

TeV-brane

New Physics effects in the heavy fermion sector !

+ other attractive features of the RS scenario:

- WIMP candidates for the dark matter of universe:
 a LKP stable due to a possible KK-parity (like in UED)
- Unification of gauge couplings (as in ADD) at high-energies
- Fermion mixing angles and flavor structure (as in ADD) ≠ in SUSY
- Extra-Dimensions =

necessary ingredients for higher-energy string theories

AdS / CFT correspondance (98') :

WARPED H-DIM. SCENARIOS / STRONGLY COUPLED MODELS

5D holographic version	RS with bulk fields	gauge-Higgs unification	Higgsless models
4D dual interpretation	composite Higgs boson	composite Higgs pseudo- Goldstone boson of a global symmetry (as for little Higgs with T parity)	technicolor models

The EW precision constraints in the warped models:

Bulk gauge bosons/fermions mix with their KK excitations => tree-level contributions to EW observables

Ways out to respect the constraints from EW precision data for M_{KK} ~TeV :

~> Gauge custodial symmetry in the bulk

Agashe, Delgado, May, Sundrum (2003)

~> Brane-localized kinetic terms for fermions/gauge fields Carena et al. (2002) Aguila et al. (2003)

~> Modification of the AdS metric in the vicinity of the IR brane Cabrer, Gersdorff, Quiros (2010) We consider the quark representations under $SU(2)_L \times SU(2)_R \times U(1)_X$:

$$\begin{pmatrix} t_{1L} & b'_{L} & q'_{-4/3L} \\ b_{1L} & q''_{-4/3L} & q'_{-7/3L} \end{pmatrix}_{-5/6} \begin{pmatrix} t_{2L} \\ b_{2L} \end{pmatrix}_{1/6} (b_{R} & q'_{-4/3R})_{-5/6} & (t_{R} & b'_{R})_{1/6} \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ &$$

Z' charges (I_{3R} isospin) and coupling ($g_{Z'}$ ~3)

=> Zbb couplings allowing to address A^b_{FB}

II) A^t_{FB} and tt cross section @ Tevatron

A^t_{FB} at Tevatron

with Parity-violating couplings

« What is the Forward-Backward asymmetry for the top quark ? »

≠0

1

$$A_{\rm FB}^{t} = \frac{\sigma^{F} - \sigma^{B}}{\sigma^{F} + \sigma^{B}} = \frac{\sigma[\cos\theta_{t}^{*}:0 \to 1] - \sigma[\cos\theta_{t}^{*}:-1 \to 0]}{\sigma[\cos\theta_{t}^{*}:0 \to 1] + \sigma[\cos\theta_{t}^{*}:-1 \to 0]} = \frac{\sigma[y_{t} > 0] - \sigma[y_{t} < 0]}{\sigma[y_{t} > 0] + \sigma[y_{t} < 0]}$$
(tt rest frame)
$${\sf Rapidity}: \ y_{t} = \frac{1}{2}\ln[(E + p_{z})/(E - p_{z})] = \Delta y/2$$

« How is At_{FB} measured at Tevatron in lepton+jet channels ? »

$$\Delta y = y_t - y_{\bar{t}} \qquad y_t = (y_t - y_{\bar{t}})/2$$

$$\Delta y = q(y_l - y_h) = q \Delta y_{lh} \qquad t \rightarrow W^+ b \qquad t \rightarrow W^+ b$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad j j$$

in the laboratory frame

$$A_{\rm FB}^{t} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} = \frac{N(q\Delta y_{lh} > 0) - N(q\Delta y_{lh} < 0)}{N(q\Delta y_{lh} > 0) + N(q\Delta y_{lh} < 0)}$$

Other asymmetries...

$$A_{\rm FB}^{p\bar{p}} = \frac{\sigma[y_t^{p\bar{p}} > 0] - \sigma[y_t^{p\bar{p}} < 0]}{\sigma[y_t^{p\bar{p}} > 0] + \sigma[y_t^{p\bar{p}} < 0]} \qquad A_{\rm C}^t = \frac{\sigma_t[y_t > 0] - \sigma_{\bar{t}}[y_t > 0]}{\sigma_t[y_t > 0] + \sigma_{\bar{t}}[y_t > 0]} \quad A_{\rm C}^t = A_{\rm FB}^t => CP$$

Standard Model (QCD) contribution to At_{FB}

MCFM for SM (*m*_t=172.5GeV, *PDF*=CTEQ) @ NLO : **A**^t_{FB} = **0.058** +/- 0.009

Ahrens et al. (2010) obtain (m_t =173.1GeV, PDF=MSTW) : 0.2 < μ_f / TeV < 0.8 @ NLO : $A^t_{FB} = 0.067 + 0.006_{-0.004}$ @ NNLO-approx : $A^t_{FB} = 0.064 + 0.009_{-0.007}$

=> A^t_{FB} [M_{tt}>450GeV] anomaly probably not fully explained by QCD errors ~0.01

```
now 5.1fb<sup>-1</sup>: see F.Badaud's talk
```

07-2010 D0 in the lepton+jets channel with **(0.9fb⁻¹ then) 4.3fb⁻¹** (*ttbar frame, not unfolded = no subtracting bckgrd & effic. + no ttbar level*) : $A_{FB}^{t} = 0.08 + -0.04 + -0.01$ (+1.7 sigma from SM prediction)

03-2009 CDF in the lepton+jets channel with **(1.9fb⁻¹ then) 3.1fb⁻¹** (*lab frame, unfolded*) : $A_{FB}^{t} = 0.193 + - 0.065 + - 0.024$ (+2.1 sigma from SM prediction)

the data we use cause: most recent, unfolded and the only ones on rapidity dependence

01-2011 CDF in the lepton+jets channel with **5.3fb⁻¹** (*ttbar frame, unfolded*) : A^t_{FB} = 0.158 +/- 0.075 (+1.3 sigma from SM prediction)

$$A_{\rm FB}^{|\Delta y|<1} = \frac{N(1 > \Delta y > 0) - N(-1 < \Delta y < 0)}{N(1 > \Delta y > 0) + N(-1 < \Delta y < 0)}, \quad A_{\rm FB}^{|\Delta y|>1} = \frac{N(\Delta y > 1) - N(\Delta y < -1)}{N(\Delta y > 1) + N(\Delta y < -1)}$$

 $|\Delta y| < 3$

A^t_{FB} in the studied warped model

At_{FB} in the studied warped model

The way to compute it...

$$A_{\rm FB}^{t} = \frac{(\sigma_{SM}^{F} + \sigma_{RS}^{F} + \sigma_{inter.}^{F}) - (\sigma_{SM}^{B} + \sigma_{RS}^{B} + \sigma_{inter.}^{B})}{(\sigma_{SM}^{F} + \sigma_{RS}^{F} + \sigma_{inter.}^{F}) + (\sigma_{SM}^{B} + \sigma_{RS}^{B} + \sigma_{inter.}^{B})}$$

$$\Leftrightarrow \quad A_{\rm FB}^t = A_{\rm FB}^{RS} \times R + A_{\rm FB}^{SM} \times (1 - R)$$

Cao et al. (2010)
with
$$\begin{cases}
A_{FB}^{RS} = \frac{(\sigma_{RS-LO}^{F} + \sigma_{inter.-LO}^{F}) - (\sigma_{RS-LO}^{B} + \sigma_{inter.-LO}^{B})}{(\sigma_{RS-LO}^{F} + \sigma_{inter.-LO}^{F}) + (\sigma_{RS-LO}^{B} + \sigma_{inter.-LO}^{B})} \\
R = \frac{\sigma_{RS-LO}^{\text{total}} + \sigma_{inter.-LO}^{\text{total}}}{\sigma_{SM-LO}^{\text{total}} + \sigma_{RS-LO}^{\text{total}} + \sigma_{inter.-LO}^{\text{total}}}
\end{cases}$$

$$\underline{\mathbf{ex:}} \quad \sigma_{RS-LO}^{F} = \sigma_{RS-LO} [\cos \theta_{t}^{*} : 0 \to 1] = \\ \sum_{ij} \int_{\tau_{min}}^{\tau_{max}} d\tau \left[\int_{0}^{1} d\cos \theta_{t}^{*} \left(\frac{\mathrm{d}\hat{\sigma}_{RS-LO}}{\mathrm{d}\cos \theta_{t}^{*}} (\tau s) \right)_{ij} \right] \left\{ \int_{\tau}^{1} \frac{dx}{x} f_{i}(x,\mu_{f}) f_{j}(\frac{\tau}{x},\mu_{f}) \right\} \\ \mathbf{v}_{min/max} = \hat{s}_{min/max}/s$$

$$\mathbf{MSTW-2008-NLO}$$

It is instructive to write down the asymmetry at a partonic level (neglecting 2nd/3rd generations and gluons in initial state)...

$$\widehat{A}_{FB}^{LO}(\hat{s}) = a_{q}a_{t} \frac{4\pi\alpha_{s}^{2}(\mu_{r})}{9} \frac{\beta_{t}^{2} |\mathcal{D}|^{2} \left[(\hat{s} - M_{KK}^{2}) + 2v_{q}v_{t} \hat{s}\right]}{\hat{\sigma}_{SM-LO}^{total}(\hat{s}) + \hat{\sigma}_{RS+inter.-LO}^{total}(\hat{s})} \begin{vmatrix} a_{q} = (Q(c_{q_{R}}) - Q(c_{q_{L}}))/2, \\ a_{t} = (Q(c_{t_{R}}) - Q(c_{t_{L}}))/2, \\ v_{q} = (Q(c_{q_{R}}) + Q(c_{q_{L}}))/2, \\ v_{t} = (Q(c_{t_{R}}) + Q(c_{t_{L}}))/2, \\ v_{t} = (Q(c_{t_{R}}) + Q(c_{t_{L}}))/2, \\ \widehat{\sigma}_{SM-NLO}^{total}(\hat{s}) + \hat{\sigma}_{RS+inter.-LO}^{total}(\hat{s}) \\ \widehat{\sigma}_{SM-NLO}^{total}(\hat{s}) \\ \widehat{\sigma}_{SM-NL$$

Full asymmetry after convolution with PDF...

(ttbar frame)

Looking at the effect of MSTW uncertainties [@ 90%C.L.]...

(ttbar frame)

Full asymmetry as a function of rapidity...

(ttbar frame)

What about the whole integrated top quark asymmetry and cross section ?

Observable	Measurement	SM [QCD-(N)NLO]	SM (dev.)	RS+SM	RS+SM (dev.)	RS+SM w.r.t. SM (%)
A_{FB}^t	0.158 ± 0.075	0.058 ± 0.009	-1.33σ	0.169	$+0.15(7)\sigma$	+192.8%
$\sigma_{tar{t}}$	$7.50\pm0.48~\rm{pb}$	7.46 pb [20]	-0.08σ	6.86 pb	-1.33σ	-8.0%
$\sigma_{tar{t}}$	$7.50\pm0.48~\rm{pb}$	7.29 pb [21]	-0.43σ	6.70 pb	-1.65σ	-8.0%
$\sigma_{tar{t}}$	$7.50\pm0.48~\rm{pb}$	7.26 pb [22]	-0.5σ	6.68 pb	-1.71σ	-8.0%

 $\mu_f = \mu_r = m_t$

Observable	Measurement	SM [QCD-(N)NLO]	SM (dev.)	RS+SM	RS+SM (dev.)	RS+SM w.r.t. SM $(\%)$
A_{FB}^t	0.158 ± 0.075	0.058 ± 0.009	-1.33σ	0.169	$+0.15(9)\sigma$	+193.0%
$\sigma_{tar{t}}$	$7.50\pm0.48~\rm{pb}$	7.61 pb [20]	$+0.24\sigma$	7.00 pb	-1.04σ	-8.1%
$\sigma_{t ar{t}}$	$7.50\pm0.48~\rm{pb}$	7.44 pb [21]	-0.11σ	$6.84 \mathrm{\ pb}$	-1.37σ	-8.1%
$\sigma_{tar{t}}$	$7.50\pm0.48~\rm{pb}$	7.41 pb [22]	-0.18σ	$6.81 \mathrm{\ pb}$	-1.43σ	-8.1%

$$\mu_f = 2m_t \quad \mu_r = m_t$$

[20] Langenfeld et al. (2009)
[21] Kidonakis et al. (2008)

[22] Cacciari et al. (2008)

 $m_t = 172.5 \; {\rm GeV}$

III) A^b_{FB} and EW precision tests @ LEP

Interpretation in a generic extra-dimensional model... (difficult in SUSY)

$$\begin{vmatrix} \delta Q_Z^{f_l} \\ \approx 1^{\circ}_{00} & \ll \begin{vmatrix} \delta Q_Z^{b_{L/R}} \\ \approx |-1.5/30\%| & m_{b'}(c_{t_R}) & \ll m_{f'}(c_{light}) \end{vmatrix}$$

$$\begin{array}{c} \text{oupling } Z_{KK} f_l \overline{f_l} & \ll \text{ Coupling } Z_{KK} b\overline{b} & m_t(c_{t_R}) & \Rightarrow m_{b'}(c_{t_R}) & \downarrow \\ & \downarrow & & \downarrow & \downarrow \end{matrix}$$

'natural' conditions within the RS model

Summary of the EW observables...

IV) Constraints and predictions @ LHC

Constraint from it cross section $\sigma_{t\bar{t}}$

$\mathcal{L} = 35 \text{ pb}^{-1}$ 36 pb ⁻¹ combined final states $\sqrt{s} = 7 \text{ TeV}$					
Collaboration	Measurement	SM [QCD-(N)NLO]	SM (dev.)	RS+SM (dev.)	
ATLAS	$180\pm18.5~\rm{pb}$	164 pb [35]	-0.86σ	-0.88σ	
ATLAS	$180 \pm 18.5 \text{ pb}$	163 pb [21]	-0.91σ	-0.94σ	
ATLAS	$180 \pm 18.5 \text{ pb}$	155 pb [24]	-1.35σ	-1.37σ	
CMS	$158 \pm 19 \text{ pb}$	164 pb [35]	$+0.31\sigma$	$+0.29\sigma$	
CMS	$158 \pm 19 \text{ pb}$	163 pb [21]	$+0.26\sigma$	$+0.24\sigma$	
CMS	158 ± 19 pb	155 pb [24]	-0.15σ	-0.17σ	

[35] HATHOR program (2011)
[21] *Kidonakis et al. (2011)*[24] *Ahrens et al. (2009)*

major gg initial state

 $\mu_f = \mu_r = m_t = 173 \text{ GeV}$

Constraints from dijets

What does the RS model predicts at the expected luminosity of 1 fb⁻¹?

An excess should be visible..

..for $\mu_f = \mu_r = m_t = 173 \text{ GeV}$

The predicted tt excess due to KK gluon is observable but not 'spectacular'

the pair production of ~10²GeV colored fermions [« **custodian** » b'] might be (in particular due to the increase factor induced by : $q\bar{q} \rightarrow g^{(1)} \rightarrow b'\bar{b}'$).

Let's assume now a slightly different scenario solving A^b_{FB}, A^t_{FB} as we showed but **without custodian** effects at present colliders :

- A heavy custodians (by mixing with higher KK states, in a multiplet with larger c value, coupled to Planckian/bulk masses, ...)
- \bigcirc custodial symmetry implemented à *la Mohapatra* i.e. without new fermions, e.g. with (t_R,b_R), thanks to more structured Higgs sector
- \checkmark without custodial symmetry: EWPT protected by brane-kinetic terms or modified geometrical background and A^{b}_{FB} curred by Z^{KK} .

Without b' like fermion, the RS model predicts a nice $g^{(1)}$ resonant peak...

assuming 100 GeV bin resolutions

Smaller total KK gluon width cause no more channel $g^{(1)} \rightarrow b'\bar{b}'$:

 $\Gamma_{KK}/M_{KK} \simeq 416 \text{ GeV} / 1500 \text{ GeV} \simeq 0.27$

A clean resonance shape is predicted...

V) Conclusions

- The 'warped paradigm', with theoretical motivations, predicts deviations from SM in the 3rd generation sector => A^{b}_{FB} , A^{t}_{FB} = early indications ?
 - We suggest a geometrical RS realization addressing both A^b_{FB} and A^t_{FB}.
 - The several constraints on the parameter space render this RS scenario quite predictive on the effects in the tt invariant mass ditribution @ LHC.
- This RS framework addressing A^t_{FB} reflects a more generic 'no-lose' thm in the phenomenology of warped models : a clear signature is expected
 Q LHC either from KK gluon resonances or from custodian productions.
- One must wait for more data (Tevatron,LHC) in order to discriminate between the main A^t_{FB} interpretations: Z/W ', KK gluon, Axigluon,...

Back up

Some useful formula's...

$$\cos\theta_t^* = \sqrt{1 + \frac{4m_t^2}{\hat{s} - 4m_t^2}} \quad \tanh y_t$$

$$\frac{1}{\mathcal{D}} = \hat{s} - M_{KK}^2 + i \frac{\hat{s}}{M_{KK}^2} \sum_{q} \Gamma_{KK}^{g^{(1)} \to q\bar{q}} M_{KK} \frac{\beta_q [v_q^2 (3 - \beta_q^2)]/2 + a_q^2 \beta_q^2}{v_q^2 + a_q^2}$$

 $\beta_t = \sqrt{1 - 4m_t^2/\hat{s}}$

$$\sqrt{\hat{s}_0} \simeq \frac{M_{KK}}{(1 + \Gamma_{KK}^2 / M_{KK}^2)^{1/4}}$$

$$\frac{\mathrm{d}\hat{\sigma}_{RS-LO}}{\mathrm{d}\cos\theta_t^*}(\hat{s}) = \frac{\pi\alpha_s^2(\mu_r)\beta_t}{9\hat{s}} \times \hat{s}^2 |\mathcal{D}|^2 \Big[8v_q v_t a_q a_t \beta_t \cos\theta^* + (a_q^2 + v_q^2) \left(v_t^2 (2 - \beta_t^2 \sin^2\theta^*) + a_t^2 \beta_t^2 (1 + \cos^2\theta^*) \right) \Big]$$

$$\frac{\mathrm{d}\hat{\sigma}_{inter.-LO}}{\mathrm{d}\cos\theta_t^*}(\hat{s}) = \frac{\pi\alpha_s^2(\mu_r)\beta_t}{9\hat{s}} 4\hat{s}\mathrm{Re}(\mathcal{D}) \left[v_q v_t \left(1 - \frac{1}{2}\beta_t^2 \sin^2\theta^* \right) + a_q a_t \beta_t \cos\theta^* \right]$$

$$\frac{\mathrm{d}\hat{\sigma}_{SM-LO}}{\mathrm{d}\cos\theta_t^*}(\hat{s})\Big|_{q\bar{q}} = \frac{\pi\alpha_s^2(\mu_r)\beta_t}{9\hat{s}} \bigg\{ 2 - \beta_t^2 \sin^2\theta^* \bigg\}$$

Global A^b_{FB} fit @ and off the Z pôle :

Improved goodness-of-fit

Best-fit Higgs mass

- t RS fit can be better for any $m_h > 115 \text{GeV}$ (e.g. $m_h = 190 \text{GeV} = > h -> Z^0 Z^0$)
- t for m_h = 500 GeV $\begin{cases}
 p-value can be @ 25.3\% in RS if M_{KK} = 4 TeV \\
 p-value is only @ 2.5 10^{-9} in SM \\
 m_h excluded in gauge-Higgs unification & SUSY
 \end{cases}$

=> the discovery of a heavy Higgs would constitute a sign for RS

t the best-fit m_h value is possibly larger than the LEP2 direct limit of 115GeV

in contrast with the SM where the best-fit m_h is 76^{-24}_{+33} GeV (getting even smaller by excluding A^b_{FB})

Better quality of fit in RS than in SM cause..

Problems/Solutions in the Higgs boson sector

a) Quantum instability of the Higgs mass: $\delta m_h^2 \propto \Lambda_{NP}^2$

~> Supersymmetry (MSSM): $\delta m_h^2 \approx \tilde{m}^2 \approx (10^2 GeV)^2$ as no quadratic dvg. ~> Extra Dimensions (ADD,RS): δm_h^2 protected by $\Lambda_{NP} < M_{grav} \approx TeV$ (Higgsless): models without Higgs boson !

~> Composite Higgs (MHCM): δm_h^2 protected by $\Lambda_{NP} = \Lambda_{IR} \approx TeV$ [& possibly till Λ_{NP} via a global symmetry]

b) Quantum instability of the Higgs quartic coupling λ

~> Supersymmetry (MSSM): SUSY => $\lambda = g^2$ protects λ

~> Extra Dimensions (gauge-Higgs unif.): GAUGE SYM. => $\lambda = g^2$ protects λ (Higgsless): no high-energy Higgs potential

c) <u>EW Symmetry Breaking dynamics</u>

~> Supersymmetry (mSUGRA): EWSB triggered by negative Higgs mass induced radiatively (via top quark loop)

~> Composite Higgs (MHCM): EWSB triggered by negative Higgs mass induced radiatively (via top quark loop)

~> Extra Dimensions (Higgsless): SB by field Boundary Conditions & KK masses for fermions/bosons

So the main approaches towards the Higgs questions are SUSY or ED like

+ renew of interest for ED-type scenarios:

{EXP. – no discovery of superpartners @ LEPII (nor Tevatron Run II)
TH. – AdS/CFT correspondance (98') => calculability of EW observables (03') in Composite Higgs scenarios (84')