

Search for Higgs bosons at Tevatron

Boris Tuchming – Irfu/Spp CEA Saclay

The Tevatron proton-antiproton collider

Run I (1993-1996)

~120 pb⁻¹ per experiment-top quark discovery Run II: (2002-2011)

Tevatron now delivers >2 fb¹ per year Tevatron shutdown forseen in 2011 ~10 fb¹ delivered per experiment

Direct and indirect constraints

Direct constraints from LEP

The state of the s

Indirect (contributions from Tevatron)

$$M_H = 89^{+35}_{-26} GeV$$

M_H < 185 GeV @95%

Light mass Higgs is favoured: region accessible to Tevatron

Higgs production at the Tevatron

Production cross section (for 115< m_H<180 GeV)

- → in the 1200-300 fb range for gluon fusion gg → H
- → In the 200-30 fb range for WH associated vector boson production
- In the 80-30 fb range for the vector boson fusion qq → Hqq

Low Mass vs High Mass

 Decay modes depend on the Standard Model Higgs mass

- At high mass :
 - Look for W decay products
 - → Peak sensitivity just above threshold M_H~165 GeV.

$$m_H > 135 \text{ GeV}$$

 $H \rightarrow WW^*$

Main channels at the Tevatron

For $M_H > 130 \text{ GeV}$

 $gg \rightarrow H \rightarrow WW^*$

evev, μνμν, eνμν2 leptons ~ 40 GeV

E_⊤ ~ 60 GeV

small $\Delta \phi$ (I+,I-) (H is scalar)

ev jj, μv jj:

1 leptons ~ 40 GeV

£_⊤ ~ 40 GeV

2 jets ~ 40 GeV

 $M_{jj} = M_{l,ET} = 80 \text{ GeV}$

pp → WH→WWW*

 $ee+jj+vv,e\mu+jj+vv, \mu\mu+jj+vv$

 $E_{\rm T} \sim 40 \; {\rm GeV}$

2 leptons of same charge

NB: Xsec normalized to NNLO

NB: Xsec normalized to NNLO+NNLL

Backgrounds to Higgs Searches

W+jets

 Z/γ

- W+jets, Z/γ +jets
 - Alpgen MC+ pythia showering, NNLO cross-sections, data-based corrections to model p_T(W),p_T(Z)
 - background for all channels:
 - jets faking lepton
 - mismeasured jets or leptons MET
 - → W+bb, Z+bb final states (mimic ZH, WH)

- WW
- yw z w
- Di-boson WW, WZ, ZZ
 - → NLO calculation for cross-sections
 - → for WW: NLO correction for p_T and di-lepton opening angle

WZ

> We have

- Top
- multijet

- Top pair and single topcross-section normalized at NNLO
- QCD multijet events
 - jets faking leptons
 - mismeasured jets creating MET

Backgrounds to Higgs Searches

jet

b jets tagging: essential for search at low mass

B-hadrons are long lived particles: cτ~0.5 mm.

B-hadrons can decay semi-leptonically: b->µvc

Can make use of:

- High impact parameter of tracks==> light quark Jet Probability
- Secondary vertex reconstruction (SVX)
- Lepton tag
- b-jet kinematics (large B-hadron mass)
- Combination of above with multivariate techniques (eg Neural Network)

Eg: CDF 2rd vtx tag

Eg: DO NN (2006)

 ε =50% for 2% mis-tag at η <1

 ε =60% for 1.5% mis-tag Pt=50 GeV (loose tag)

Improving acceptance with better b-tagging

B-hadrons are long lived particles: cτ~0.5 mm.

B-hadrons can decay semi-leptonically: b->µvc

Can make use of:

- High impact parameter of tracks
 ==> light quark Jet Probability
- Secondary vertex reconstruction (SVX)
- Lepton tag
- b-jet kinematics (large B-hadron mass)
- Combination of above with multivariate techniques (eg Neural Network)

Eg: CDF 2rd vtx tag

Eg: DO NN (2006)

DO MVA (2009)

 ε =50% for 2% mis-tag at η <1

ε=60% for 1.5% mis-tag Pt=50 GeV (loose tag)

ε=60% for 1% mis-tag Pt=50 GeV

Increasing number of Higgs candidate events

Increase in lepton acceptance

- **→** D0
 - electrons in intercriostat region
 - isolated tracks without muon identification
- CDF
 - plug (forward) electrons
 - muon chamber extensions
 - Inclusive triggering

Add low sensitivity channels

• Channels with τ , ttH, H $\rightarrow \gamma \gamma$,

hadronic taus perfomances:

NN cut effi	τ_h l	τ _h 2	T _h 3	
jets	3 %	2.5 %	2.5 %	
τ	60 %	75 %	65 %	$\overline{\mathbb{M}}$

Jet energy resolution

- $ZH \rightarrow II bb$:
 - $\mathcal{E}_{T} \sim 0$ as kinematical constraint
 - Improve dijet mass resolution at D0 and CDF

Number of Events

- WH \rightarrow Iv bb
 - Kinematics variable of (b) jets to bring energy closer to the initial parton energy
 - Gain of ~ 20-25% in relative resolution

Multivariate techniques

- Extended use of :
 - Artificial Neural Network (NN)
 - Boosted Decision Tree (BDT)
 - Easier and faster to train
 - Matrix Element (ME)
 - computer intensive

Major Inputs at low mass:

- Dijet mass
- p_T of dijet
- W p_T Z p_T
- Sphericity
- ΔR_{jj} , Δφ_{jj}. Δη_{jj}

$$P_{\mathrm{WH}}(x) = \frac{1}{\sigma} \underbrace{\sum_{i,j}}_{f_i(q_1)} \int_{y} \underbrace{f_i(q_1)f_j(q_2)}_{\mathrm{PDF}} \times \underbrace{\frac{d\sigma_{\mathrm{WH}}}{dy}}_{\mathrm{ME}} \times \underbrace{W(x,y)}_{\mathrm{Response}}$$

- Can be used several times per analysis:
 - Eg signal ME as inputs to BDT
 - Eg 3 BDT trained specifically against 3 kind of background

Boris Tuchming - Higgs at Tevatron

Each channel now uses (at least) one multivariate discriminant

Main discriminating variables as inputs to

Final multivariate discriminants

CDF Run II Preliminary (4.3 fb⁻¹)

Systematics

Systematics are channel dependent

- Flat systematics: affect overall normalization
- Shape systematics: modifiy output of final discriminant
- Impact of systematics is reduced thanks to statistical method (~fit procedure in background dominated region
- Have to account of correlations among channels

Main sources are:

- Luminosity and normalization
- Multijet background estimates
- Background cross-sections, K-factors for W/Z+ Heavy flavor
- Modeling of background differential distributions (shape)
- B-tagging efficiency
- Jet energy calibration
- Lepton identification

Improved sensitivity in the future if we reduce our systematics

Some systematics from Tevatron combination

(July 2010)

D0: double tag (TLDT)	$ZH \rightarrow \nu \nu b \bar{b}$	channel relati	ve uncertainti	ies (%)	
Contribution	WZ/ZZ	Z+jets	W+jets	$t\bar{t}$	ZH,WH
Jet Energy Scale pos/neg (S)	± 5.1	± 7.1	±6.6	∓0.5	± 1.6
Jet ID (S)	1.1	± 1.2	0.8	0.1	1.1
Jet Resolution pos/neg (S)	∓ 1.6	± 2.0	± 1.9	∓ 2.0	∓ 1.6
MC Heavy flavor b-tagging pos/neg (S)	$\pm \ 8.0$	± 0.6	± 8.5	± 10.2	± 9.9
MC light flavor b-tagging pos/neg (S)	1.5	± 12.6	± 1.2	± 0.1	0.0
Direct taggability & Vertex Confirmation(S	S) 7.4/1.5	± 9.0	± 6.8	5.2/0.1	8.3/0.0
Trigger efficiency (S)	3.5	3.5	3.5	3.5	3.5
Parton Distribution Function (S)	± 0.1	0.0	± 0.4	0.6/-0.5	0.6/0.9
EM ID	0.3	-	0.6	0.8	0.3
Muon ID	1.1	0.5	1.0	1.8	1.0
Cross Section	7.0	6.0	6.0	10	6.0
Heavy Flavor Ratio	-	20	20	-	

CDF: loose double-tag (LDT) $WH, ZH \to E_T b\bar{b}$ channel relative uncertainties (%)

Contribution	ZH	WH	Multijet	Top Pair	S. Top	Di-boson	W + h.f.	Z + h.f.
Luminosity	3.8	3.8		3.8	3.8	3.8	3.8	3.8
Lumi Monitor	4.4	4.4		4.4	4.4	4.4	4.4	4.4
Tagging SF	11.6	11.6		11.6	11.6	11.6	11.6	11.6
Trigger Eff. (shape)	1.2	1.3	1.1	0.7	1.2	1.2	1.8	1.3
Lepton Veto	2.0	2.0		2.0	2.0	2.0	2.0	2.0
PDF Acceptance	2.0	2.0		2.0	2.0	2.0	2.0	2.0
JES (shape)	$^{+3.7}_{-3.7}$	$^{+4.0}_{-4.0}$	$-5.4 \\ +5.2$	$^{+1.1}_{-0.7}$	$^{+4.2}_{-4.2}$	+7.0 -7.0	$^{+1.3}_{-7.6}$	$^{+6.2}_{-7.1}$
ISR	+1	1.4	10.2	0.,		1.00		,
FSR		2.9 5.3 2.5						
Cross-Section	5.0	5.0		10	10	6	30	30
Multijet Norm. (shape)			11					

Contribution	Diboson	$Z/\gamma^* \to \ell\ell$	$W + jet/\gamma$	$t \bar{t}$	Multijet	H
Trigger	2	2	2	2	_	2
Lepton ID	3	3	3	3	_	3
Momentum resolution (s)	0	3	1	0	_	0
Jet Energy Scale (s)	1	5	1	1	_	1
Jet identification (s)	1	3	1	1	_	1
Cross Section	7	7	7	10	10	11
Luminosity	6	6	6	6	_	6
Modeling (s)	1	1	3	0	0	1

Irfu

Analysis method: Divide and Rule

Channels are split into subchannels: ~50 analysis to be combined

- Different bins in jet multiplicity
- Different b-tagging content
- Lepton flavour, lepton id criteria

Eg: IIbb at D0 = 8 channels (ee, $\mu\mu$, e+ICRe, μ +track)x(1 b-tag, 2 b-tag)

Goal is to maximize sensitiviy: each subchannel has its own S/B Eg WH, 2jets: 0-btag S/B~1:4000, 1btag(only) S/B~1/400 2 b-tag S/B~1/100

Build Likelihood based on multivariate discriminant distribution to test S and S+B hypothesis

Analysis method: Divide and Rule

Channels are split into subchannels: ~50 analysis to be combined

- Different bins in jet multiplicity
- Different b-tagging content
- Lepton flavour, lepton id criteria

Eg: IIbb at D0 = 8 channels (ee, $\mu\mu$, e+ICRe, μ +track)x(1 b-tag, 2 b-tag)

Goal is to maximize sensitiviy: each subchannel has its own S/B Eg WH, 2jets: 0-btag S/B~1:4000, 1btag(only) S/B~1/400 2 b-tag S/B~1/100

Build Likelihood based on multivariate discriminant distribution to test S and S+B hypothesis

Tevatron full mass range combined limits (Last update July 2010)

High mass channels able to exclude SM Higgs @ 95% CL

158<m_H<175 GeV is excluded expected sensitivity 156<m_H<175 GeV

Tevatron Run II Preliminary, $\langle L \rangle = 5.9 \text{ fb}^{-1}$

Low mass sensitivity close to LEP exclusion

Limits For m_{μ} =115 GeV $\sigma_{os}/\sigma(SM)$ =1.56 (1.45 expected)

Limits For $m_H = 130 \text{ GeV } \sigma_{o_5} / \sigma(SM) = 2.23 \text{ (1.76 expected)}$

Break down in july 2010

Channel	Expt	Dataset now	Increase since Nov. 2009 combination
$H \rightarrow WW$	D0	6.7	24%
H → WW	CDF	5.9	23%
WH → lvbb	CDF	5.7	30%
WH → lvbb	D0	5.3	6%
ZH/WH→METbb	CDF	5.7	60%
ZH/WH→METbb	D0	6.4	23%
ZH → llbb	CDF	5.7	40%
ZH → llbb	DO	6.2	45%
$H \rightarrow \gamma \gamma$	CDF	5.4	New!
$H \rightarrow \gamma \gamma$	DO	4.2	0%
Н → тт	CDF	2.3	15%
Н → тт	D0	4.9	0%
ZH/WH→qqbb	CDF	4	100%
ttH	D0	2.1	0%

- Final Tevatron results should be based on 10 fb⁻¹
 - → will scale statistics by ~1.8 on average

Irfu

Last update for high mass only (Moriond 2011)

Increase statistics and improved analysis: Each experiment has reached SM Higgs sensitivity

163<m₄<168 GeV is excluded expected sensitivity 160<m_H<168 GeV

159<m₄<168 GeV is excluded expected sensitivity 158<m_H<168 GeV

Irfu

Combined update for high mass (Moriond 2011)

High mass channels able to exclude SM Higgs @ 95% CL

158<m_H<173 GeV is excluded expected sensitivity 153<m_H<179 GeV

Tevatron Run II Preliminary, $L \le 8.2 \text{ fb}^{-1}$

(selected) results for Higgs beyond SM

D0 new fermiophobic Higgs search

- Look for H → γγ decay
- Employ NN based photon Identification
- MVA for final discrimination

D0 exclude: m_H<112 GeV @95%CL

Improve over LEP limit (109.7 GeV) and CDF (106 GeV, 2.6 fb⁻¹)

Higgs search within 4th generation model

- New heavy generation of quarks
 - ggH coupling is multiplied by 3 compared to SM
 - Production is enhanced by 9

- Search in di-lepton +MET channel can be recycled
 - Some analysis tuning required because of extended mass reach (eg $\Delta \phi(I,I)$ cut not applicable when W's are boosted)

CDF+D0 combined exclusion: 130<m_µ<210 GeV @95%CL

4.8-5.4 fb⁻¹

CDF only 7.1 fb⁻¹ (spring 11) 123<m₁<202 GeV @95%CL

SUSY Higgs at large tan β

In MSSM 2 Higgs doublets (type II)

- → tanβ = v2/v1 ratio of vev's
- → 5 Higgs: 3 neutral (h,H,A) and 2 charged (H+,H-)
- 2 parameters at tree level : (M_A, tan(β))
- At large $tan\beta$: 2 neutral ~degenerated in mass with bbf coupling ~tan β
 - → Decays $\phi \rightarrow$ bb (90%), $\phi \rightarrow \tau\tau$ (10%)
- cross-section enhanced by $\sim 2 \times \tan^2 \beta$ (at leading order) relative to SM
- Region of interest : when tanβ < M_t/M_b ~30

Tau channels at large tan(β)

Searching for a bbb signal **⊕**1200⊦

- DØ and CDF find similar flavour admixture
- But large systematic uncertainties

Look for excess in di-jet mass spectrum

sensitivity around $\tan \beta \sim 50$

600

400

200

100

350 400

 $M_{b\bar{b}}$ [GeV]

DØ , 5.2 fb'

→ DØ Data **Background**

High-mass likelihood

Heavy flavor

PLB 698, 97 (2011)

b) 3 iet

Constraints on MSSM parameters

The Combinations probe value $\tan \beta \sim 30$

- → DØ combination: 2 yrs old, L<2.6 fb-1
- CDF/DØ combination L<2.2 fb-1

Need to update with recent analysis from D0:

 $\tau_{\mu}\tau_{h}$: 1+4.3 fb⁻¹, $\tau_{e}\tau_{h}$ 3.7 fb⁻¹,bbb 1+4.2 fb⁻¹

Should be able to probe $tan\beta\sim20-25$

Conclusion

- Already a lot of results from Tevatron for SM and BSM Higgs
- More data expected before 2011 shutdown
 - → Full data set: + 25% to 70% statistics for most of the analysis
- Analysis improvement still foreseen
 - → The demonstrated improved acceptances and resolutions are not yet propagated to all channels.
 - Some further improvements still expected

Standard Model Higgs

Should explore mass range [100-190]
 GeV with final datase

MSSM at large tanβ

 Combining existing results is foreseen to explore down to tanβ~20

full MSSM combination

 Tevatron as the potential to cover a large part of the (m_Δ,tanβ) plane

 M_A (GeV)

Support slides

Tevatron Experiments at Runll

- silicon detector
- Drift chamber
- TOF PID system

Upgraded

- Calorimeter
- DAQ/trigger
- displaced-vertex trigger

- Tracking in B-field
 - Silicon detector
 - fiber tracker

Upgraded

- Calorimeter, muon system
- DAQ/trigger
- RunIIb: Silicon layer 0, Cal Trigger

Evolution of sensitivity

- How to go further?
 - more data
 - but also more clever analysis techniques

LHC & Tevatron Compared (I)

For $M_X > 140 \text{ GeV}$

gg → H cross section at 7 TeV is >15 times that at 2 TeV

Irreducible backgrounds (WW,ZZ) originate from $q\overline{q}$ process which rises relative slowly ($pp \text{ vs } p\overline{p}$)

 \Rightarrow Larger signal, better S/N

3

Controlling background

Example of method that define data « control region »

- B-tagging selection is varied to
 - Study background composition
 - Study background shape

Note that S/B remains small, need to be increased......

GDR TeraScale – Lyon 2011

Hypothesis: $m_H = 115$ GeV

All bins of all subchannels of all channels

Data – Background shown compared to signal in red

Fluctuations: Excess and deficit average out:

Expected limit 1.45*SM

Observed limit 1.56*SM

Charged Higgs

- ❖ If m_{H±} < m_{top}: search in top pair sample for decay to H[±]
- Consider two search modes based on H[±] decays
 - Tauonic model: $H^{\pm} \rightarrow \tau \nu$ (high tanβ)
 - Leptophobic model: $H^{\pm} \rightarrow c\bar{s}$ (low tanβ)
- **Search dilepton,** ℓ +jets, ℓ + τ top channels
- ❖ Select high-p_T leptons, E_T, and b-tag
- ❖ 95% CL limits on BR(t→H+b)
 - DØ 1.0 fb⁻¹: PLB 682, 278 (2009)
 - CDF 2.2 fb⁻¹: PRL 103, 101803 (2009)

MSSM Benchmark

- 2 parameters, $(M_A, tan(\beta))$ to describe SUSY Higgs sector at Leading Order
- hbb vertex receive large corrections from sbottom-gluino and stop-higgsino loop
- Five additional parameters due to radiative correction
 - M_{SSY} (parameterizes squark, gaugino masses)
 - (related to the trilinear coupling $A_t \rightarrow \text{stop mixing}$)
 - (gaugino mass term)
 - (Higgs mass parameter)
 - M_{diro} (comes in via loops)
- Two common benchmarks
 - Max-mixing Higgs boson mass m, close to max possible value for a given tanß
 - No-mixing vanishing mixing in stop sector → small mass for h

	m _h -max	no-mixing
M _{SUSY}	1 TeV	2 TeV
X,	2 TeV	0
M ₂	200 GeV	200 GeV
μ	±200 GeV	±200 GeV
mg	800 GeV	1600 GeV

MSSM prospects

Including SM searches

Wine & Cheese seminar
Boris Tuchming - Higgs at Tevatron

Di jet invariant mass in association with a W boson

(a)

fit with SM template

and SM+gaussian template

$$\sigma_{resolution} = \sigma_W \sqrt{\frac{M_{jj}}{M_W}} = 14.3 \, GeV$$

events/(8 GeV/o CDF data (4.3 fb⁻¹ 700 WW+WZ 4.5% 600 V+Jets 80.2% Top 6.5% 500 Z+icts 2.8% QCD 5.3% 400 300 200 100 200 M, [GeV/c2]

excess events electrons muons 156 ± 42 97 ± 38 excess/expected diboson electrons muons 0.60±0.18 0.44±0.18

3.2 sigma excess in the 120-160 GeV mass range

arXiv: 1104.0699