

La physique du quark top à CMS

Silvano Tosi IPN Lyon

Sommaire

- Le quark top
- L'expérience CMS au LHC
- Ingrédients pour la physique du top
- Une sélection des résultats
 - Candidats top
 - Mesure de la section efficace avec le canal dileptonique
 - Mesure de la section efficace avec le canal semileptonique
- Perspectives et conclusions

Le quark top (I)

- La particule élémentaire la plus lourde connue
 - m = (173.3±1.1) GeV/c^{2*}; $\tau < 10^{-25}$ s
 - Il se désintègre avant d'hadroniser
 - BR(*t*->*Wb*) ~ 100%

• Production de paires $t\bar{t}$ (QCD): $\sigma \approx 158$ pb à 7 TeV

Selon la désintégration des W, on classifie les désintégrations des paires tt comme semileptoniques (42%), dileptoniques (10%) ou hadroniques (48%)

• Production de tops célibataires (EWK): σ ≈78 pb à 7 TeV

Le quark top (II)

- Le quark top a une importance incontournable au LHC
- Teste des performances du détecteur
 - Plusieurs sous détecteurs interviennent: états finaux avec leptons, jets, énergie manquante
- Le top est un des fonds principaux pour la majorité des autres processus
- Vérification des calculs de QCD dans l'environnement du LHC
- Recherche de Nouvelle Physique au-delà du MS
 - couplage préférentiel de plusieurs modèles de NP au top
 - plusieurs signatures « top-like » prévues dans ces modèles

Le programme de physique du top

- Pour commencer:
 - « redécouverte » du top
 - mesure de la section efficace de production inclusive \checkmark
- Mesures de précision
 - sections efficaces différentielles,
 - top célibataire,
 - Propriétés du top:
 - m(t) et m(t)-m(t),
 - spin,
 - V_{tb},

....

- Présentés
 dans ce talk
 - On est en train d'approcher tout ça
- Recherches

 Z' -> tt,
 t -> H⁺b,
 t',
 t + Higgs,
 <li...
- ~ 6000 paires t sont disponibles dans les données du 2010 !

Le LHC

Les données accumulées

- Plan pour le 2011: run à 7 TeV.
 - On s'attends 1/fb de données
- Possible augmentation de l'énergie à 8 TeV en 2012

- 2009:
 - 12.5/μb pp à 900 GeV
 - 0.5/μb pp à 2.36 TeV
- 2010:
 - 47.03/pb pp à 7 TeV
 - 8.38/µb ions lourds à 7 TeV

Le détecteur CMS

8

Ingrédients pour la physique du top

- Instrument important pour la compréhension des premières données
- Quasiment tous les objets interviennent: états finaux avec leptons, jets, MET
 - isolation et identification des leptons
 - reconstruction et résolution des jets
 - résolution et mesure de l'énergie manquante
 - étiquetage des jets b

Les leptons

Les jets et l'énergie manquante

Étiquetage des jets b

PAS BTV-10-001

• Plusieurs algorithmes disponibles, à choisir selon le niveau

d'efficacité et rejet des fonds désiré

- vertex secondaire
- signifiance du paramètre d'impact
- leptons dans les jets

Quelque évènement intéressant

Mesure de la section efficace de production de paires *t*t

- Mesure avec le canal dileptonique avec 3.1/pb Phys. Lett. B 695, 424 (2011)
- Mesure avec le canal semileptonique avec 0.84/pb CMS-PAS TOP-10-004
- D'autres résultats, utilisant la totalité des données du 2010, sont en cours de finalisation pour la présentation aux conférences d'hiver

Le canal dileptonique

- Canaux ee, eµ, µµ
- Le taux de production inferieur (~6%) est compensé par un fonds plus bas
- Sélection des évènements
 - Deux leptons chargés avec charge opposée, isolé et avec $p_T > 20$ GeV/c et $|\eta| < 2.5$
 - Au moins deux jets avec $p_T > 30 \text{ GeV/c}$
 - MET > 30 GeV pour ee/ $\mu\mu$; > 20 pour e μ
 - Veto Z -> ee/μμ
- Estimation des fonds à partir des données
 - QCD: leptons issus des désintégrations des mésons K/ π et faux leptons
 - Paires Drell-Yan: normalisées aux paires proches du pic du Z
- Les autres fonds (di-bosons, top célibataire, DY->ττ) estimés sur les MC

Quelque variable discriminante

• Après la requête de deux leptons de charge opposée et isolés:

- Très bon accord données/MC, avec quelque petite différence
 - amélioration du modèle (interactions multiples)
 - prise en compte grâce à la normalisation des fonds utilisant le pic du Z.

Estimation des fonds DY avec les données

- Veto région |m(l⁺l⁻) 91 GeV|
 < 15 GeV
- Fond résiduel à l'extérieur de la région du veto estimé à partir de la région vetée en utilisant la proportion observée sur le MC
- Contribution non DY prise en compte en utilisant les évènements eµ
- DY -> ττ estimé séparément sur le MC

Fond de leptons non W/Z

- Principalement du à des jets identifiés comme leptons
 - QCD: deux jets faux
 - W+jets: un lepton vrai et un lepton faux
- Fond estimé à partir des données
 - Taux de faux mesuré sur un échantillon dominé par multi-jets
 - Détermination de combien de jets sont identifiés comme des bons « leptons » isolés
 - Indentification de régions de contrôle sur les données: évènements dileptoniques passant toutes les coupures sauf l'identification et l'isolation des leptons
 - Application du taux de faux aux régions de contrôle pour prédire le fond dans la région de signal

- Efficacité = (23.0±1.4)%
- 11 évènements passent la sélection: 3 ee, 3 μμ , 5 eμ
- Fond attendu 2.1±1.0

Source	Incertitude
Sélection des leptons	4.4%
Echelle d'énergie des jets	3.7%
ISR/FSR	1%
Modèle de la désintégration	2%
Rapport de branchement	1.7%
Estimation des fonds	15%
Luminosité	11%

 La plupart des systématiques diminueront en augmentant la statistique, par exemple l'estimation des fonds

 Nouvelle mesure avec 36/pb en phase de finalisation pour la présentation aux conférences d'hiver

Section efficace:

σ(pp -> tt + X) = (194 ± 72(stat) ± 24 (syst) ± 21 (lumi)) pb

- e+jets et μ+jets
- Exactement un lepton identifié et isolé. Muons $p_T > 20$ GeV/c et $|\eta| < 2.1$. Electrons: $p_T > 30$ GeV/c et $|\eta| < 2.5$
- Au moins 4 jets avec $p_T > 30 \text{ GeV/c e } |\eta| < 2.4$
- Première version de l'analyse: pas de coupures sur MET et btagging
 - Coupures sur MET et *b*-tagging régulièrement utilisées maintenant

Accord données-MC

23

Estimation du fond QCD

- Plusieurs méthodes pour estimer le fond QCD à partir des données ont été mises en place
 - Méthode ABCD: utilisation de deux variables non corrélées. Incertitude sur le numéro d'évènements QCD ~ 50%

 Extrapolations utilisant la variable d'isolation ou les distributions de l'énergie manquante et de H_{T,lep} (somme scalaire de l'E_T du lepton et de l'énergie manquante)

Electron+jets

Jet multiplicity	ttbar	single top	W+jets	Z+jets	QCD	Sum MC	Data
$N_{jets} \ge 0$	12 ± 2	$\textbf{3.4}\pm\textbf{0.4}$	2619 ± 317	180 ± 21	658 ± 73	3472 ± 326	3434
N _{jets} ≥1	12 ± 2	3.1 ± 0.4	419 ± 77	92±11	436 ± 62	962 ± 99	1022
N _{jets} ≥2	11±2	1.9 ± 0.3	74±18	19 ± 5	85 ± 22	191 ± 29	183
N _{jets} ≥3	8.9 ± 1.8	0.70 ± 0.14	13 ± 4	3.3 ± 1.0	14 ± 5	40 ± 7	43
N _{jets} ≥4	4.8 ± 1.2	0.21 ± 0.06	2.6±1.1	0.60 ± 0.23	2.3 ± 1.1	11 ± 2	13

- Incertitude sur le numéro d'évènements prévus
 - Echelle d'énergie des jets (10%)
 - Luminosité (11%)
 - Sections efficaces

Muon+jets

Jet multiplicity	ttbar	single top	W+jets	Z+jets	QCD	Sum MC	Data
N _{jets} ≥ 0	13 ± 3	4.2 ± 0.4	3708 ± 448	192 ± 29	223 ± 25	4140 ± 450	4142
N _{jets} ≥1	13 ± 3	3.9 ± 0.4	552 ± 106	42 ± 12	79 ± 17	690 ± 108	789
N _{jets} ≥2	13 ± 2	2.3 ± 0.3	92 ± 24	7.1 ± 4.4	10 ± 3	124 ± 25	153
$N_{jets} \ge 3$	10 ± 2	0.82 ± 0.15	16 ± 5	1.3 ± 0.9	1.3 ± 0.5	29 ± 5	40
$N_{jets} \ge 4$	5.6 ± 1.4	0.24 ± 0.06	3.1 ± 1.2	0.25 ± 0.18	0.15 ± 0.07	9.3 ±1.9	11

 Incertitude sur le numéro d'évènements prévus

- Echelle d'énergie des jets (10%)
- Luminosité (11%)
- Sections efficaces

Jets b

- Canaux semi-e et semi-µ combinés
- Utilisation d'un algorithme d'étiquetage des *b* avec efficacité de 81% et taux de faux de 10%
- Parmi les évènements avec au moins 3 jets:
 - 30 évènements observés
 - Fond attendu 5.3
 - Signal attendu 15

Perspectives à court terme

- Beaucoup de nouveaux résultats sont en cours de finalisation pour les conférences d'hiver
- Utilisation de l'entière ensemble de données à 7 TeV (36.15/ pb) :
 - Mesure de la section efficace inclusive avec les canaux dileptoniques et semileptoniques (avec et sans *b*-tagging)
 - Mesure de la masse du top avec les canaux dileptoniques et semileptoniques
 - Spectre de masse des paires $t\bar{t}$ avec le canal semileptonique
 - Asymétrie de charge avec le canal semileptonique
 - Recherche de tops célibataires dans le canal t

... et à plus long terme

- Avec plus de statistique (1/fb de données attendues durant le 2011)
 - Section efficace de production de paires $t\overline{t}$:
 - inclusion des canaux dileptoniques et semileptonique avec les τ et du canal hadronique pour la mesure de la section efficace et de la masse du top
 - Sections efficaces différentielles
 - Propriétés du top:
 - Mesure de la masse et de la différence de masse entre top et antitop
 - Hélicité du W
 - Corrélations de spin
 - Largeur
 - Charge
 - FCNC dans les désintégrations
 - Couplage aux bosons
 - Top célibataire:
 - Section efficace aussi dans les canaux *tW* et *s*
 - Couplage anomal *W-t-b*
 - Toujours avec les yeux ouverts pour des déviations par rapport au MS, y compris des particules exotiques comme W' -> t b, Z' -> tt

Asymétrie de charge

- Le MS prévoit une production symétrique (au LO) des paires t du point de vue de la charge de couleur.
- De la NP peut modifier le schéma, par exemple si les paires sont issues de désintégrations de résonnances exotiques
- Le Tevatron (*) a une évidence d'asymétrie forward-backward:
 - CDF: 0.150±0.050±0.024, D0: 0.08±0.04±0.01
- A CMS on peut mesurer l'asymétrie en rapidité
- On s'attends une sensitivité compétitive avec le Tevatron avec ~1/fb de données

Masse du top

- Important ingrédient des tests du MS
- Le Tevatron (*) mesure la masse avec une précision de 0.6% : (173.1±1.1) GeV/c²
- CMS s'attends une sensitivité de ~3% avec le canal dileptonique avec les données courantes

Corrélations de spin

- Temps de vie du top trop court pour un spin flip: corrélation de spin de la paire tt.
- Dans le MS: C ~ 0.777 dans le référentiel des faisceaux, au NLO
- De la NP peut modifier le schéma
- CDF mesure un coefficient de corrélation de spin de 0.72±0.64±0.26 et D0 -0.17^{+0.64}_{-0.53} (*)
- Avec le canal semileptonique, CMS s'attends une sensitivité de ~20% avec 2/fb de données

Spectre de masse tt

- Des résonnances de NP (*) se désintégrant en *tt* peuvent modifier le spectre par rapport au MS
- CDF et D0 excluent des résonnances dans le modèle « top-color assisted technicolor » jusqu'à 820 GeV/c² (**)
- CMS peut tester des modèles avec Z' « top-color leptophobic » avec ~>120 pb

Conclusions

- Le LHC a commencé son aventure!
- Excellentes performances du détecteur de CMS et compréhension de tous les objets nécessaires pour la physique du top
- Environ 36/pb de données sont déjà disponibles. Le programme de la physique tu top a démarré aussi !
 - Deux mesures de section efficace déjà publiées utilisant une partie des données
 - Plusieurs résultats utilisant l'entière statistique attendus très bientôt
- Le LHC fournira environ 1/fb de données dans le 2011
 - Le plus grand échantillon de quarks top !
- Beaucoup de résultats intéressants très prochainement !

LHC plans

Beam parameters	150 ns	75 ns	50 ns
Bunch intensity [e11 p/b]	1.2	1.2	1.2
Normalised Emittance [µm]	2.5	2.5	2.5
Colliding bunches	368*	936	1404

*assume 368 b as proven from 2010 - should be able to go to ~424 b

Baseline is 2E32 Peak and 1fb-1 (integrated)

Based on the experience of 2010, possibly more!

Do physics also in 2012 and postpone the long shutdown. Possibly increase of the c.o.m. energy during 2012

Fond dileptons

$$N_{\rm out}^{ee,{
m data}}=R_{
m out/in}^{ee}\left(N_{
m in}^{ee,{
m data}}
ight)$$

$$N_{\rm out}^{ee,\rm data} = R_{\rm out/in}^{ee} \left(N_{\rm in}^{ee,\rm data} - 0.5 N_{\rm in}^{e\mu,\rm data} k_{ee} \right), \quad k_{ee} = \sqrt{\frac{N_{\rm in}^{ee,\rm loose}}{N_{\rm in}^{\mu\mu,\rm loose}}},$$

Sample	ID, ISO, Z-veto	with $N_{\text{jet}} \ge 1$	with $ ot\!$
ee			
DY in simulation	2.4 ± 0.7	0.41 ± 0.13	0.008 ± 0.002
DY estimate in data	$2.2\pm0.5\pm1.1$	$0.23 \pm 0.16 \pm 0.12$	$0.00^{+0.16}_{-0.00}$ $^{+0.08}_{-0.00}$
μμ			
DY in simulation	2.9 ± 0.7	0.48 ± 0.12	0.019 ± 0.005
DY estimate in data	$2.9\pm0.6\pm1.5$	$0.36 \pm 0.21 \pm 0.18$	$0.00^{+0.25}_{-0.00}$

Calibration des jets

$$R(\eta^{probe}, p_{\rm T}^{dijet}) = \frac{2 + \langle B \rangle}{2 - \langle B \rangle} \qquad B = \frac{p_{\rm T}^{probe} - p_{\rm T}^{barrel}}{p_{\rm T}^{dijet}}$$

- MC response should ideally be ~ 1
- Deviations are due to a resolution bias effect intrinsic in the dijet balancing method.
 - Each reconstructed jet pt bin is contaminated with true jets of
 - lower pt whose detector response fluctuated high
 - The effect is larger at larger eta
- Data agree well with simulation.
- A 10% deviation in data at high eta: this is due to higher single particle response in data:
 - corrected for by using residuals

 residuals are defined as the difference between data and MC after extrapolating to 0 the third jet activity