ADVANCED CARDIAC MRI A TECHNICAL OVERVIEW

Matthias Stuber, PhD Professor University of Lausanne & Johns Hopkins University Director CIBM Module CHUV www.unil.ch/cymr

UNIL | Université de Lausanne Radiodiagnostic et radiol

Diagnostic Cardiovascular MRI

Courtesy: Prof. Jürg Schwitter

Flow Quantification

Courtesy: Dr. Gerard Crelier, Gyrotools, www.gyrotools.com

3D Motion of the Heart

Abd-Elmoniem et al.: Med Image Anal. 2008 Dec;12(6):778-86.

Human Disease

Leading Causes of Death in the USA in 2004*

*Heart Disease and Stroke Statistics — 2007 Update, American Heart Association

Cardiovascular Disease (Leading Cause of Death in Industrialized Nations)

Percentage Breakdown of Deaths (>800'000 in 2006 USA) attributable to CVD*

*Heart Disease and Stroke Statistics — 2010 Update, American Heart Association

Coronary Arteries

• Blood vessels that supply blood to the heart muscle.

www.info.med.yale.edu

Coronary Artery Disease

- A luminal narrowing (stenosis) develops
- Blood-flow is impaired
- Insufficient oxygen supply
- Angina or infarct

www.info.med.yale.edu

Netter, Netters Allgemeinmedizin (ISBN 3131358815), © 2005 Georg Thieme Verlag

Coronary Artery Disease Progression (atherosclerosis)

thrombus

Progression as a function of time

Libby *Circulation* 2001;104:365-72

Diagnosis of Coronary Artery Disease

Avec l'aimable autorisation de: Dr. Didier Locca

X-Ray Coronary Angiography

*Heart Disease and Stroke Statistics — 2007 Update, American Heart Association *Budoff et al. Circulation 1996; 93: 898

Alternative Comprehensive Technique Needed

MRI:

- Magnetic field
 - 100'000 x stronger than earth magnetic field.
 - 600 times stronger than fridge magnet.
- No X-Rays
- Non-invasive
- High soft tissue contrast
- Patient friendly

Michelangelo, 1504

A little Bit of History: 1977 First image of a human heart that I was able to find

Magnetic Resonance Imaging (MRI) Image of a brain Image of a heart

MRI method: Optimized to visualize blood-vessels in the brain

We Have Established...

Significant human health concern Limitations of current diagnostic method

MRI as a potential alternative

Need for MRI methods development

Understand the Problem...

Motion

- Breathing
- Heartbeat

Contrast

- Muscle
- Blood

Geometry

- 3D
- Small Ø
- Tortuous

Understanding Motion

Intrinsic *cardiac motion*: Cardiac cycle: ~60/min; ~2cm Extrinsic *cardiac motion*: Respiratory cycle: ~12/min; ~2cm

Expiration

Inspiration

32cm

Engineering Challenge

Suppression of Motion (Intrinsic)

ECG triggering and segmented acquisition
Short data collection window
Data collection during a period of minimal motion

Suppression of Motion (Extrinsic)

Suppression of Motion (Extrinsic)

•Navigator gating during free-breathing

Understand the Problem...

Motion

- Heartbeat
- Breathing

Contrast

- Muscle
- Blood

Geometry

- 3D
- Small Ø
- Tortuous

Generation of Contrast

	T1 [ms]	T2 [ms]	Δω ₀ [Hz]	flow
Blood	1650	250	0	yes
Muscle	1200	50	0	no
Fat	300	100	440	no
1				

Generation of Contrast

• T2 Prep*

T2_{Myo}: 50ms T2_{Blood}: 250ms

*GA Wright, DG Nishimura, A Macovski, *Magn Reson Med* 17:126-140 (1991). *JH Brittain, et al., *Magn Reson Med* 33:689-696 (1995).

Generation of Contrast

•Taking Advantage of Natural T2 differences: T2Prep*

*GA Wright, DG Nishimura, A Macovski, *Magn Reson Med* 17:126-140 (1991). *JH Brittain, et al., *Magn Reson Med* 33:689-696 (1995).

Solving the Problem

Pulse Sequence for Coronary MRI

Can the Method Visualize Disease?

- Disseminate MRI method* among international centers
- Purpose & study protocol
 - Using uniform hardware, software & MRI method to examine the clinical value of coronary MRA for the diagnosis of significant disease of the proximal coronary arteries.
 - Prospective comparison with gold standard X-Ray coronary angiography (independent core lab).
 - 109 patients from 8 international centers.

*Stuber M. et al.: J Am Coll Cardiol. 1999 Aug;34(2):524-31

Patient with LM/LAD & LCX disease

Patient with 2 lesions in proximal RCA

1) Kim WY, Danias PG, Stuber M. et al.: N Engl J Med;345(26):1863-1869 (2001).

• Results (Detection of >50% stenosis)

	Any CAD [%]	LM/3VD [%]
Sensitivity	93	100
Specificity	42	85
PPV	70	54
NPV	81	100

1) Kim WY, Danias PG, Stuber M. et al.: N Engl J Med;345(26):1863-1869 (2001).

The New England Journal of Medicine

Copyright © 2001 by the Massachusetts Medical Society

VOLUME 345

DECEMBER 27, 2001

NUMBER 26

CORONARY MAGNETIC RESONANCE ANGIOGRAPHY FOR THE DETECTION OF CORONARY STENOSES

W. YONG KIM, M.D., PH.D., PETER G. DANIAS, M.D., PH.D., MATTHIAS STUBER, PH.D., SCOTT D. FLAMM, M.D., Sven Plein, M.D., Eike Nagel, M.D., Susan E. Langerak, M.Sc., Oliver M. Weber, Ph.D., ERIK M. PEDERSEN, M.D., PH.D., MATTHIAS SCHMIDT, M.D., RENÉ M. BOTNAR, PH.D., AND WARREN J. MANNING, M.D.

MI.D., PH.D., MATTHIAS SCHMIDT, M.D., RENÉ M. BOTNAR, PH.D., AND WARREN J. MANNING. N

ERIK M. PEDEBEEN, M.D., EIKE NAGEL, M.D., SUSAN F. LAWRATTHIAS STUBER, PH.D., SCOTT D

Time to Reflect...

- What have we learned?
 - MRI, a non-invasive, patient-friendly technique without x-ray exposure, enables the assessment of significant proximal *luminal* coronary artery disease.
- What is needed to take this to the next level?
 - Obtain a higher specificity through access to more distal (†volumetric coverage) and smaller-diameter (†spatial resolution) vessels.
- What would happen in the case of ultimate success?
 - Unnecessary x-ray catheterizations could be avoided (\uparrow quality of life, \downarrow \$\$).
 - Complementary information in one setting.

Whole Heart Coronary MRA

+Ease-of-use +Volumetric coverage

Sensitivity: 82, Specificity: 91

Weber OM. Magn Reson Med. 2003 Dec;50(6):1223-8.

Sakuma H. Radiology 2005;237:316
Challenges for CMR @ 3T

• ECG

- Field inhomogeneity
 - B₀ and B₁
- Patient safety (SAR limitations)
 - ↑ B₀ → ↑ $ω_0$ → ↑ RF deposition SAR (SSFP →↓RF excitation angles ↓contrast, TSE...)
- Enhanced spatial resolution
 - Need for improved motion suppression

Challenges (a) 3T: B_1 Inhomogeneity

Greenman et al.: JMRI, 2003 Jun;17(6):648-55.

Nezafat R. Magn Reson Med. 2006 Apr;55(4):858-64.

Solutions (a) 3T: $\uparrow \Delta B_1 \rightarrow A diabatic T2Prep$

Nezafat R., Stuber M. et al.: Magn Reson Med. 2006 Apr;55(4):858-64.

Potential for Coronary MRA @ 3T

(0.34x0.35x1.5mm voxel size)

→ MR System

- → Philips 3T Achieva
- → Dual Quasar Gradient System
- → 6-Element Cardiac SENSE Coil
- → Imaging Sequence
 - \rightarrow 3D TFE (volume targeted, 2cm)
 - \rightarrow TE/TR: 2.3/7.6ms
 - → Matrix/FOV: 800/270mm
 - \rightarrow Acquired Voxel Size: <u>0.34x0.35x1.5mm</u>
 - → Reconstructed Voxel Size: 0.26x0.26x0.75mm
 - \rightarrow Fat Saturation
 - $\rightarrow 2^{nd}$ Order Shimming
 - \rightarrow Scanning time ~10min
- → Motion Suppression
 - → *FREEZE* (automated prescription of diastolic rest period)*
 - \rightarrow VECG
 - → Free-Breathing & Real-Time Navigator

*Ustun A. et al.: AJR 2007

High Field Coronary MRA (7T) First Steps...

Self-Navigated Whole Heart MRI

Stehning C. et al.: Magn Reson Med. 2005 Aug;54(2):476-80

Self-Navigated Whole Heart MRI

Stehning C. et al.: *Magn Reson Med*. 2005 Aug;54(2):476-80 Piccini D. et al.: *Magn Reson Med*. 2011 Apr 5.

Societal changes and risk factors: Early Atherosclerosis

David, 1504, ca 20 years

Progression of Coronary Atherosclerosis

Adapted from Libby Circulation 2001;104:365-72

Hypothesis: The coronary vessel wall can be visualized non-invasively using MRI for the *quantitative characterization* of *early atherosclerotic* positive arterial *remodeling*

Challenge:

- Small dimensions
- Motion
- Contrast
 - Wall
 - Lumen (blood)

Generation of Contrast

	T1 [ms]	T2 [ms]	Δω ₀ [Hz]	flow
Blood	1650	250	0	yes
Muscle	1200	50	0	no
Fat	300	100	440	no

Local Inversion¹

Design of a Cylindrical Pulse*

* Diploma Thesis C. Barmet, ETHZ

Design of a Cylindrical Pulse*

Numerical Simulation

Phantom Experiment

* Diploma Thesis C. Barmet, ETHZ

Coronary Vessel Wall Imaging

Coronary Vessel Wall Imaging

Lumen

Botnar et al.: *Magn Reson Med*. 2001 Nov;46(5):848-54.

Desai et al.: Eur Heart J. 2005 Nov;26(21):2320-4.

Wall

Coronary MRA

MRI of the vessel wall

Coronary Vessel Wall Imaging

Coronary Vessel Wall Thickness

* Kim W, Stuber M, Manning WJ et. Al.: Circulation 2002

Coronary Vessel Wall MRI: Current State of the Art

	Subjects With Normoalbuminuria (N=37)	Subjects With Diabetic Nephropathy (N=24)	Р
RCA interpretable, n (%)	33 (89)	21 (88)	0.8
RCA VW image quality	3.2±0.9	2.9±0.7	0.2
RCA VW mean thickness, mm	1.3±0.2	1.7±0.3	<0.001
RCA VW maximum thickness, mm	1.6±0.3	2.2±0.5	<0.001
RCA plaque detected, n (%)	5 (15)	16 (76)	<0.001

VW indicates vessel wall. Data are mean±SD when appropriate.

Kim WY et al.: Circulation. 2007 Jan 16;115(2):228-35

Time to Reflect...

- What have we learned?
 - Sophisticated MRI methods enable the non-invasive identification and quantification of early atherosclerotic positive coronary arterial remodeling.
- What is needed to take this to the next level?
 - IVUS correlation.
 - Ability to differentiate different plaque components.
- What would happen in the case of ultimate success?
 - Plaque that is prone to rupture can be identified noninvasively.

Progression of Coronary Atherosclerosis

Adapted from Libby Circulation 2001;104:365-72

Stem Cells and MRI

- Cells are MR 'invisible': \rightarrow iron (Fe) labeling* (\uparrow susceptibility)
 - Monitoring of delivery
 - Visualization of migration
 - Determination of fate
 - Quantification of function

Kraitchman, Bulte et al.: Circulation 107(18), 2003

Stem Cells and MRI

• Problem:

- Negative contrast from susceptibility artifacts are difficult to discriminate from other potential sources of signal voids absence of tissue, motion artifacts, calcifications, water/fat out of phase etc.
- Objective:
 - The development of an MRI methodology that enables the *signal-enhanced* visualization of iron labeled stem cells.

Design of a Positive Contrast MRI Method

Superparamagnetic material → local magnetic field change → frequency shift:

$$\Delta B(r,\Theta)_{External} \sim \frac{\Delta K}{3} \frac{a^3}{r^3} (3\cos^2 \Theta - 1) B_0$$

$$\Delta \omega = \gamma \Delta B(r, \Theta)_{External}$$

Iso-frequency surface

Visualization of Iron Labeled Stem Cells with Positive Contrast

- In vitro experiment 3T:
 - Water suppression

IRON Imaging

Results: IRON* Imaging (1.5T) : *Adjustment of Sensitivity*

 $BW_{Water} = 100 \text{Hz}$

*Stuber M. et al.: *Magn Reson Med*. 2007 Nov;58(5):1072-7.

Visualization of Iron Labeled Stem Cells with Positive Contrast

• In vivo cardiac imaging:

 $0.6 x 0.6 x 2 mm^3$

- Stem cell injection into infarcted dog heart

Progression of Coronary Atherosclerosis

Adapted from Libby Circulation 2001;104:365-72

"Molecular" Imaging

• Vulnerable plaque¹

- Inflammation^{2,3} → recrutment of monocytes or macrophages.⁴ ⇒
- Iron oxide nanoparticles
 - Macrophages: Phagocytosis of such nanoparticles.

1) Naghavi et al.: *Circulation*. 2003;108:1664-72.

- 2) Swirski et al.: *Proc Natl Acad Sci U S A*. 2006;103:10340-5.
- 3) Libby: *Nature*. 2002;420:868-74.

4) Swirski et al.: *J Clin Invest*. 2007;117(1):195-205.

The Trojan Horse

- Intravenous injection of nanoparticles*.
- Macrophages \rightarrow 1.) phagocytose those nanoparticles. \rightarrow 2.) accumulate in the vulnerable plaque.
- Hypothesis: Nanoparticle uptake in the vunerable plaque can be visualized with positive contrast IRON imaging.

Domenico Tiepolo, 1773

Methods

- Animals:
 - 7 Watanabe (heritable hyperlipidemic) rabbits
 - high-cholesterol diet for 6 weeks
 - 4 New Zealand White rabbits (controls)
 - normal rabbit chow
- Magnetic nanoparticles^{1,2}:
 - Monocrystalline iron oxide $(\downarrow T2^*, T1)$
 - (MION)-47 (CMIR, Harvard Medical School)
 - Ø 27.5±6.8nm
 - Plasma half-time 11.4±0.6h (in mice)
 - 250µmol Fe/kg per injection

Shen et al.: Magn Reson Med1993;29:599-604.
Wunderbaldinger et al.: Bioconjug Chem. 2002;13:264-8.

Molecular MRI of Vulnerable Plaque

Results: IRON Vessel Wall Enhancement (NER) vs. % Macrophage Area Watanabe Rabbits

Time to Reflect...

- What have we learned?
 - IRON MRI & superparamagnetic nanoparticles highlights areas of macrophage rich plaques.
 - Magnitude of enhancement is related to the amount of macrophages in Watanabe rabbits.
- What is needed to take this to the next level?
 - Translate to human setting!
- What would happen in the case of ultimate success?
 - Plaques with a high likelihood for rupture can be identified.

Team CIBM/CHUV

- Gabriele Bonanno •
- Simone Coppo •
- Andrew Coristine •
- Helene Feliciano •
- Maria Firsova •
- Dr. Eleonora Fornari •
- Dr. Ruud van Heeswijk •

Siemens collaboration

- Dr. Markus Klarhöfer •
- Dr. Tobias Kober •
- Dr. Gunnar Krüger •
- Dr. Edgar Müller •
- Dr. Davide Piccini •
- Dr. Wolfgang Rehwald •
- Dr. Oliver Weber •
- Dr. Michael Zenge •

Radiology CHUV

- Prof. Reto Meuli •
- **Prof. John Prior** •
- Dr. Christian Lu 0

Cardiology CHUV

- Nathalie Lauriers •
- Dr. Didier Locca •
- Prof. Jürg Schwitter •
- Prof. Pierre Vogt •

- Dr. Yves Wiaux •
- Gilles Puy •

NIH collaboration

Dr. Michael Hansen •

Funding Agencies

- NIH/NHLBI: RO1 HL084186 •
- **Fulbright Program** •
- FBM •

All the patients and volunteers who generously donate their time!

- Group JHU:
 - K. Abd-Elmoniem, PhD
 - H. Agarwal, MS
 - A. Hayes, MD
 - G. Hirsch, MD
 - S. Kelle, MD
 - G. Korosoglou, MD
 - T. Lijun, MD
 - R. Nezafat, PhD
 - M. Schaer, PhD
 - S. Shah, MS
 - A. Ustun, MS
 - E.J. Vonken, MD, PhD
 - J. Yu, PhD
- Former Collaborators:
 - C. Barmet, PhD, Zurich
 - R. Botnar, PhD, London
 - A. Etienne, MS, Lausanne
 - M. Huber, PhD, Baden
 - D. Maintz, Muenster
 - W. Manning, MD, Harvard
 - D. Sodickson, PhD, MD, NYU
 - E. Spuentrup, MD, Aachen
 - Sites multicenter trial

- JHU Collaborations:
 - R. Abraham, MD
 - A. Arepally, MD
 - T. Balducci, MD
 - J. Bulte, PhD
 - G. Gerstenblith, MD
 - W. Gilson, PhD
 - L.V. Hofmann, MD
 - G. Hirsch, MD
 - D. Kedziorek, PhD
 - D. Kraitchman, VMD, PhD
 - N. Osman, PhD
 - J. Prince, PhD
 - T. Steinberg, RN
 - J. Terrovitis, MD
 - B. Wasserman, MD
 - R.G. Weiss, MD

Thank you!

National Collaborations:

- A. Gharib, MD, NIH/NIBIB
- R. Pettigrew, PhD, MD, NIH/NIBIB
- R. Peshock, Md, Phd, Dallas
- D. Sosnovik, MD, Harvard
- R. Weissleder, MD, Harvard
- International Collaborations:
 - P. Boesiger, PhD, Zurich
 - Y. Kim, MD, Aarhus, DK
 - A. de Roos, MD, Leiden, NL
 - P. Luyten, PhD, Utrecht, NL
 - Y. Watanabe, MD, Kurashiki, JP
 - E. Fleck, MD, Berlin, GER
 - E. Nagel, MD, London, UK
 - V. Hombach, MD, Ulm, GER
 - H. Katus, MD, Heidelberg, GER
 - A. Webb, PhD, Leiden, NL
 - Grant Support/Funding:
 - NIH/NHLBI: RO1 HL084186
 - NIH/NHLBI: ARRA SHL084186
 - The Donald W. Reynolds Found.
 - The Whitaker Foundation