Multi-Dimensional Radial Self-Navigation with Non-Linear Reconstruction for Free-Breathing Coronary MRI

Gabriele Bonanno

CardioVascular MR group

Centre d'Imagerie BioMédicale – CHUV

The Heart Motion

Is related to the displacement of a non rigid object in 3 dimensions with translational, rotational and distortion components.

Intrinsic Motion

Pulsating movement of heart

Bulk Motion

Patient movements

Extrinsic Motion

Respiration induced motion

Intrinsic Motion Compensation

> ECG gating & k-space segmentation

→ Imaging is performed during the period of minimal Coronary Motion!

Extrinsic Motion

Respiratory induced displacement:

- **SI** = 20 mm
- **AP** = 10 mm

Respiratory Motion is one of the major challenges in cardiovascular MRI !

1) Breath holding - Advantages

 Constrains Coronary Artery motion within 0.5 mm! ¹
 Easy to implement in well motivated subjects
 Preferred for functional, perfusion, late enhancement
 Short scanning times

1) Breath holding - Disadvantages

Diaphragmatic drift during breath-holding

1) Breath holding - Disadvantages

1) Breath holding - Disadvantages

Patient's ability to hold his/her breath governs maximum spatial resolution
Residual motion due to diaphragmatic drift
Mis-registrations in serial breath-holds
Major operator and patient involvement
Heart rate variations

2) Navigator Gating

Data accepted Data rejected

Scan efficiency =

2) Navigator Gating - Advantages

Quality of breath-hold does not govern image resolution
 No major patient involvement
 Offers flexibility for high resolution, 3D acquisition, signal averaging

 Has demonstrated to be effective (Multicenter experience*)

2) Navigator Gating - Disadvantages

- indirect measure of the cardiac motion
- temporal delay between NAV and data acquisition
- **×** efficiency = $30 40\% \rightarrow$ scan time!!
- X additional planning

Retrospective Self-Navigation: what has been done ...

Stehning et al. 2005

Beat-to-beat **respiratory SI motion** estimated by *k-space* center line repeatedly acquired during each segment data acquisition.

Center of mass evaluation for motion extraction

SI projections

⊳ ...

RR interval

Stehning et al. MRM 54:476-480 (2005)

- Lai et al. 2008: used Least Square for SI extraction
- > Bhat et al. 2011: multi-dimensional Self-Nav with binning of respiratory states
- for affine motion correction
- Henningsson et al. 2011: modified bSSFP for2D Self-Nav

Retrospective Self-Navigation: what has been done ...

≻Stehning et al. 2005

Heart motion is directly extracted from the MR data. 100% efficiency no additional planning

Foot-head projections of the heart!

SI projections

Stehning et al. MRM 54:476-480 (2005)

Retrospective Self-Navigation: what has been done ...

Stehning et al. 2005

X 1D motion correctionX No advanced reconstruction strategies

→ Multi-dimensional motion correction → Non-linear reconstruction

Stehning et al. MRM 54:476-480 (2005)

Retrospective Self-Navigation: the concept

interleaved 2D radial acquisition

Retrospective Self-Navigation: the concept

FT

Motion corrupted

17

Retrospective Self-Navigation: the concept

Retrospective Self-Navigation: the concept

Motion corrupted

Motion corrected

Retrospective Self-Navigation: the pipeline

 Channels Selection

Sub-images Recon

 $\Delta x, y_1 \quad \Delta x, y_2 \quad \Delta x, y_3 \quad \Delta x, y_4 \quad \Delta x, y_5 \quad \Delta x, y_6$

Motion Correction

Coregistration

Final Recon

Retrospective Self-Navigation: *Sub-images Recon*

Sub-images from a 2D radial acquisition:

- Schäffter et al. 1999 first application for knee imaging
- > McLeish et al. 2004 cardiac imaging of ex vivo data

Sub-images from a numerical simulation with 5% of the data:

Standard of Reference: convolution-based gridding ¹

Non-Linear Reconstruction with a Total Variation prior ^{2,3}

1) Jackson et al., IEEE-TMI 10:473-478 (1991)

2) Beck et al. IEEE-TIP 18:2419-34 (2009)
 3) Combettes et al. IEEE-JSTSP 14:564-574 (2007)

Retrospective Self-Navigation: *numerical simulations*

Numerical simulations were used to develop and rigorously test the method in a controlled environment:

- motion patterns and contrast values from *in vivo* MRI
- 20 shots
- 300 total projections in k-space
- 15 projections/shot (5% of the data)
- 256 matrix

Linear Regression analysis of in-plane displacements

Reconstruction results

Retrospective Self-Navigation: *Sub-images Recon*

Sub-images from a 2D high resolution scan @3T with 4% of the data:

Standard of Reference: convolution-based gridding ¹

1) Jackson et al., IEEE-TMI 10:473-478 (1991)

Non-Linear Reconstruction with a Total Variation prior ^{2,3}

2) Beck et al. IEEE-TIP 18:2419-34 (2009)
 3) Combettes et al. IEEE-JSTSP 1,4:564-574 (2007)

High Resolution 2D scan of a Right Coronary Artery:

26 shots, 364 total projections in *k*-space
14 projections/interleave(4% of the data)
368 matrix, 32 ch
0.8x0.8mm resolution, 5mm slice thickness,
300x300mm FOV, TE=3.26ms, TR=7.2ms, T2prep=50ms,
α=15deg, BW=234Hz/pixel

Sub-images

Motion corrupted

Self-NAV with conventional recon

Self-NAV with non-linear recon

- Beat-to-beat 2D image-based Self-Navigation for free-breathing coronary MRI has successfully been implemented
- Non-Linear reconstruction for sub-image extraction has shown to provide improved accuracy of motion estimation in numerical simulations and preliminarily *in vivo*
- > No motion model or additional data acquisition are needed
- Improved time-efficiency and ease-of-use

What's next ...

- Quantitatively validate and characterize the limits of the technique against to conventional NAV gating
- Image coregistration with affine transformation
- 3D motion correction

Acknowledgements

- Gilles Puy, MSc
- Yves Wiaux, PhD
- Ruud B. van Heeswijk, PhD
- Matthias Stuber, PhD

Thank you for your attention!