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Magnetic Resonance Imaging

Martinos Center for Biomedical Imaging (MGH)

• Acquisition time too long: up to an hour for a session at 3 T
• Faster acquisitions⇒ ↓ cost, ↑ comfort, ↑ quality
• Calibrate accelerated parallel imaging using sparsity

• Poor calibration⇒ ↑ noise amplification, ↑ aliasing
• We show improved calibration de-noises and mitigates

aliasing at high accelerations

• Jointly optimize fidelity to GRAPPA solution and
simultaneous sparsity of the transformed coil images
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Cartesian Encoding of k-Space
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• Sample spatial Fourier transform domain (k-space)
• Raster scan k-space along readout direction kx
• Transverse (axial) plane: phase-encode directions ky, kz
• Time proportional to extent and total # of readout lines:

time ∝ Navg
FOVyFOVz
∆x∆y∆z

← does not depend on FOVx
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Accelerated MRI

• Typically, acquisitions have SNR and spatial resolution
constraints SNR ∝

√
Navg∆x∆y∆z

• Strategy to reduce # of readout lines required:
• Use minimum k-space extent satisfying spatial resolution

requirement ∆x, ∆y, ∆z
• Use fewest # of averages Navg achieving desired SNR
• Reducing FOV below object size yields aliasing in image

domain
• Use multiple receiver coils in parallel to undo aliasing

[Roemer90]

F−→ Ry=Rz=2−−−−−−→ F−1

−−→
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Accelerated Parallel Imaging

• Image I(r) observed by P parallel coils (right)
• Receivers’ spatial weightings S1(r), . . . , SP (r)

• k-space undersampled by factor Ry ×Rz
• Samples y1[k], . . . , yP [k] have complex-valued

thermal noise η1[k], . . . , ηP [k] with covariance Λ
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Accelerated Parallel Imaging

Accelerated Parallel Imaging Methods

SENSE SMASH GRAPPA
[Pruessmann99] [Sodickson97] [Griswold02]

reconstruction
domain

image k-space k-space

combines coils yes no
uses coil
sensitivities

yes no

auto-calibration
(ACS) lines

no yes

un-aliasing quality fair1 poor2 good
amplifies noise yes

1 depends on quality of measured sensitivities
2 un-aliasing depends on arrangement of coils
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Full k-Space Recovery Using GRAPPA

GRAPPA method has two steps:

1. Calibration: Use least-squares fit of ACS lines to calibrate
kernel weights gp,q,ry ,rz [bx, by, bz] used to fill in missing
k-space in each coil

• ACS lines must be sufficiently large to fit GRAPPA kernel
pattern

• Should have at least NsrcP ACS fit equations

2. Reconstruction: Use calibrated kernel set G to fill in
missing k-space frequencies in all the coils

• Can be implemented as a correlation using FFT’s (fast) or
in the image domain (even faster)

• Various hybrid 2-D GRAPPA calibration/reconstruction
strategies for 3-D datasets discussed in [Brau08]
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GRAPPA: Coil-by-Coil Reconstruction

coil 1

coil 2

coil 3

coil 4

[Image from J. Polimeni, ISMRM, 2011.]
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Calibrating GRAPPA Kernels
Standard case: (# of fits ≥ NsrcP )

Underdetermined case: (# of fits < NsrcP )
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Regularization of GRAPPA Kernel Calibration

Existing calibration regularization techniques:

1. Tikhonov/minimum-energy regularization: Use `2 or
least-squares term alongside least-squares ACS fit
objective in calibration:

GTikhonov = arg min
G

1

NFro
‖YACS

src G−YACS
trg ‖2F + ‖αG‖2F

• Rescale ACS fit term with NFro = P ·min{RyRz − 1, Nsrc}
• Used with SENSE [Lin04]

2. GRAPPA operator-based regularization [Bydder09]:
GRAPPA kernel should behave like frequency-shift
operator, so application of the kernel repeated R times
should yield the original data (shifted R points)
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Regularization of GRAPPA Kernel Calibration

Proposed calibration regularization technique:

• Empirically, MRI images are compressible in domains like
finite-differences or DWT, like natural images [Lustig07]

• Since observation noise is uncorrelated across
frequencies, amplified noise is expected to remain not
sparse in the GRAPPA result

• We observe that the GRAPPA-reconstructed image quality
degrades significantly when there are too few ACS lines to
get a high-quality kernel fit

• Promote the sparsity of the coil images that would be
reconstructed by the calibrated kernel during the
calibration step to mitigate noise amplification
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Promoting Simultaneous Sparsity

• For a set of full-FOV k-space Yfull for each coil, each
column of the N × P matrix W represents the sparse
coefficients for the transform Ψ of that coil image:

W = ΨF−1Yfull

• Use hybrid `1,2 norm for simultaneous (joint) sparsity:

‖W‖1,2 =

N∑
n=1

‖[Wn,1, . . . ,Wn,P ]‖2

• Promote sparsity of the GRAPPA reconstruction
f(G,Yacq) convolving GRAPPA kernels G with acquired
data Yacq

arg min
G

‖ΨF−1f(G,Yacq)‖1,2
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The Sparsity Promoting GRAPPA Kernel Fit

Gsp = arg min
G

1

NFro
‖YACS

src G−YACS
trg ‖2F +λ‖ΨF−1f(G,Yacq)‖1,2

• Combine terms in objective using tuning parameter λ > 0

• Approximately solve by iterating re-weighted least-squares
problems derived using half-quadratic minimization

Gt
sp = arg min

G

1

NFro
‖YACS

src G−YACS
trg ‖2F+

λ

2
‖(∆t−1)0.5ΨF−1f(G,Yacq)‖2F ,

where ∆t−1
n,n = 1

‖[W t−1
n,1 ,...,W

t−1
n,P ,ε]‖2

is diagonal,

Wt−1 = ΨF−1f(Gt−1
sp ,Yacq), and the GRAPPA

reconstruction is an affine function of G

See [Weller et al., SPIE Wavelets and Sparsity XIV, 2011]
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Implementation Notes

• Solutions to these least-squares problems are obtained
using LSMR [Fong10]

• Each iteration requires:
• Computing the residual: (RyRz − 1)P 2 convolutions, P

inverse FFT’s, P sparsifying transforms, 2P matrix-vector
products, 2 scalar-vector multiplications

• Computing the estimate of the kernel using the (re-scaled)
residual has similar complexity

• Updating the diagonal re-weighting matrix ∆ requires
(RyRz − 1)P 2 convolutions, P inverse FFT’s, P sparsifying
transforms

• Each of these operations are highly parallelizable

2011 BASP Frontiers Workshop 14



Methods

• Real data: axial slice of 3-D dataset
• Un-accelerated ground truth (acquisition time: 8 minutes)
• T1-weighted MPRAGE sequence
• 256× 256× 176 sagittal slices; 1.0 mm isotropic voxels
• Siemens Tim Trio 3 T (Siemens Healthcare, Erlangen,

Germany) with vendor-supplied 32-channel head-coil
receive array

• Noise-only (no RF excitation) pre-scan to measure Λ
• Axial slice extracted from full dataset, cropped, and

undersampled in MATLAB

• Comparison for kernel calibration with either no
regularization or Tikhonov or sparsity-promoting
regularization

• Compared magnitude images against fully-sampled images
using difference images

• Quantitative comparisons using PSNR
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Methods

F−1

−−→ Ψ−→

• Ground truth (k-space, image, 4-level ‘9-7’ DWT)
• Uniformly undersample k-space by 4 in each direction

(Ry = Rz = 4)
• Sample center ACS block (effective acceleration < RyRz)
• Use ACS lines for kernel calibration and as data during

reconstruction
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Regularization Compared for Low-Quality ACS Fit

Experiment Parameters
Uniform undersampling: Ry = Rz = 4

Kernel size: By = Bz = 4
# of ACS lines: NACS,ky = NACS,kz = 36

Size of YACS
src : 576 fits × 512 source points

cond(YACS
src ): 4192.63

Effective acceleration: Reff = 10.5
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Regularization Compared for Low-Quality ACS Fit

GRAPPA w/ no regularization
PSNR = 22.2 dB
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Regularization Compared for Low-Quality ACS Fit

GRAPPA w/ Tikhonov regularization (α2 = 10−1.2)
PSNR = 28.2 dB
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Regularization Compared for Low-Quality ACS Fit

GRAPPA w/ sparsity (λ = 1)
PSNR = 28.4 dB
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Regularization Compared for Underdetermined Fit

Experiment Parameters
Uniform undersampling: Ry = Rz = 4

Kernel size: By = Bz = 4
# of ACS lines: NACS,ky = NACS,kz = 20

Size of YACS
src : 64 fits × 512 source points

cond(YACS
src ): N/A

Effective acceleration: Reff = 13.7

GRAPPA kernel calibration requires regularization
in underdetermined case!
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Regularization Compared for Underdetermined Fit

GRAPPA w/ Tikhonov regularization (α2 = 100.2)
PSNR = 21.1 dB
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Regularization Compared for Underdetermined Fit

GRAPPA w/ sparsity (λ = 10−0.8)
PSNR = 25.2 dB
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Discussion

Three operating regimes:

1. # of fits� BxByBzP : (not shown)
• regularization only marginally beneficial

2. # of fits ∼ BxByBzP : (first experiment)
• both types of regularization effectively de-noise the result
• sparsity-promoting regularization avoids (minor) residual

aliasing visible in Tikhonov-regularized result

3. # of fits < BxByBzP : (second experiment)
• both types of regularization effectively de-noise the result
• sparsity-promoting regularization removes aliasing whereas

Tikhonov-regularization does not
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Discussion

• Trade-off: effective acceleration vs. reconstruction error
by varying # of ACS lines

• All methods flat at low effective acceleration
(little benefit from high # of ACS lines)

• Proposed method greatly improves reconstruction at high
effective acceleration

• Applications:
• Acquiring ACS lines is expensive, e.g. MR spectroscopy
• Maximum acceleration is essential, e.g. echo volumar

imaging (EVI)
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Future Extensions

• Proposed method leverages uniform Cartesian
subsampling

• Fast non-iterative GRAPPA with one set of kernels does not
exist for nonuniform subsampled data

• Extension to nonuniform Cartesian subsampling:
• Alternate calibration and reconstruction steps
• Perform calibration with current estimates for uniformly

spaced subsampled k-space data
• Perform reconstruction with current calibrated kernel

weights and find full k-space consistent with both kernel
and acquired data

• Extend sparsity term from fixed sparsifying transform to
learned dictionaries

• Combine with sparsity-promoting post-processing method
like SpRING [Weller11]
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SpRING: Post-processing GRAPPA with Sparsity

Balance fidelity to the GRAPPA solution (G(d)) and sparsity of
the solution while preserving observed data d:

ŷ ∈ arg min
y

GRAPPA fidelity︷ ︸︸ ︷
‖CF−1(y −G(d))‖22 +λ

joint sparsity︷ ︸︸ ︷
‖ΨF−1y‖1,2 s.t.

preserve data︷ ︸︸ ︷
d = Ky

• Weight GRAPPA fidelity in image domain using coil
combination weights C determined from the ACS data

• Wavelet domain simultaneous sparsity: Ψ is the DWT, and

‖W‖1,2 =

N∑
n=1

‖[Wn,1, . . . ,Wn,P ]‖2

• Tuning parameter λ balances GRAPPA fidelty, sparsity
• Operate in the nullspace of observation matrix K

See [Weller et al., ISMRM, 2011; Weller et al., 2011 (preprint)]
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PSNR Performance of SpRING

Experiment Parameters
Uniform undersampling: Ry = Rz = 4

Kernel size: By = Bz = 3
# of ACS lines: NACS,ky = NACS,kz = 36

Size of YACS
src : 784 fits × 288 source points

cond(YACS
src ): 566.83

Effective acceleration: Reff = 10.5
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PSNR Performance of SpRING

GRAPPA GRAPPA L1 SPIR-iT SpRING
+ Wiener λ = 10−2.6 λ = 100.4

PSNR: 25.9 dB 28.1 dB 28.3 dB 28.2 dB

GRAPPA, GRAPPA with Wiener-filter denoising, L1 SPIR-iT,
and SpRING reconstructions, difference images, and PSNRs
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