# Combinatorial Selection and Least Absolute Shrinkage via → The CLASH Operator

Volkan Cevher

Laboratory for Information and Inference Systems – LIONS / EPFL http://lions.epfl.ch & Idiap Research Institute

joint work with my PhD student
Anastasios Kyrillidis @ EPFL



#### Linear Inverse Problems



Machine learning Compressive sensing Information theory Theoretical computer science dictionary of features non-adaptive measurements coding frame sketching matrix / expander

#### Linear Inverse Problems



٠

#### Approaches

|        | Deterministic                          | <b>Probabilistic</b>   |
|--------|----------------------------------------|------------------------|
| Prior  | parsity compressibility                | f(x)                   |
| Metric | $\ell_p$ -norm*                        | likelihood<br>function |
|        | * : $  x  _p = (\sum_i  x_i ^p)^{1/p}$ |                        |

#### A Deterministic View Model-based CS (circa Aug 2008)



# My Insights on Compressive Sensing

 Sparse or compressible x not sufficient alone



N

 $\times$  1

2. Projection  $\Phi$ 

information preserving (stable embedding / special null space)

3. Decoding algorithms

tractable

### Signal Priors

• **Sparse** signal: only K out of N coordinates nonzero

– model: union of all K-dimensional subspaces aligned w/ coordinate axes



# Signal Priors

- Sparse signal: only K out of N coordinates nonzero
  - model: union of all K-dimensional subspaces aligned w/ coordinate axes
- Structured sparse signal: reduced set of subspaces (or model-sparse)
  - model: a particular union of subspaces
     ex: clustered or dispersed sparse patterns





 $\mathbf{R}^N$ 

 $x \in \check{\Sigma}_{K}$ 

# Signal Priors

 $\mathbf{R}^N$ 

 $x \in \Sigma_K$ 

- Sparse signal: only K out of N coordinates nonzero
  - model: union of all K-dimensional subspaces aligned w/ coordinate axes
- Structured sparse signal: reduced set of subspaces (or model-sparse)
  - model: a particular union of subspaces
     ex: clustered or dispersed sparse patterns



### Sparse Recovery Algorithms

- Goal: given  $u = \Phi x + n$ recover x
- $\ell_{q:q\leq 1}$  and convex optimization formulations
  - basis pursuit, Lasso, BP denoising...

$$\widehat{x} = \arg \min \|x\|_1 \text{ s.t. } u = \Phi x$$

$$\widehat{x} = \arg\min \|u - \Phi x\|_2 \text{ s.t. } \|x\|_1 \le t$$

$$\hat{x} = \arg \min \|u - \Phi x\|_2^2 + \mu \|x\|_1$$

- iterative re-weighted  $\ell_1 \& \ell_2$  algorithms
- Hard thresholding algorithms: ALPS, CoSaMP, SP,...
- Greedy algorithms: OMP, MP,...

http://lions.epfl.ch/ALPS

 $\{x' :$ 

 $||x||_1 = c$ 

 $u = \Phi x'$ 

#### Sparse Recovery Algorithms

|           | Geometric                                        | Combinatorial $\binom{N}{K}$              | Probabilistic                                                  |  |
|-----------|--------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|--|
| Encoding  | atomic norm /<br>convex relaxation               | non-convex<br>union-of-subspaces          | compressible /<br>sparse priors                                |  |
| Example   | $\min_{x:\ x\ _1 \le \lambda} \ u - \Phi x\ ^2$  | $\min_{x:\ x\ _0 \le K} \ u - \Phi x\ ^2$ | $E\{x u\}$                                                     |  |
| Algorithm | Basis pursuit, Lasso,<br>basis pursuit denoising | IHT, CoSaMP, SP, ALPS,<br>OMP             | Variational Bayes, EP,<br>Approximate message<br>passing (AMP) |  |

$$||x||_0 = \#\{x_i \neq 0\}$$

### Sparse Recovery Algorithms

#### **The Clash Operator**

|           | Geometric                                        | Combinatorial $\binom{N}{K}$              | Probabilistic                                                  |
|-----------|--------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|
| Encoding  | atomic norm /<br>convex relaxation               | non-convex<br>union-of-subspaces          | compressible /<br>sparse priors                                |
| Example   | $\min_{x:\ x\ _1 \le \lambda} \ u - \Phi x\ ^2$  | $\min_{x:\ x\ _0 \le K} \ u - \Phi x\ ^2$ | $E\{x u\}$                                                     |
| Algorithm | Basis pursuit, Lasso,<br>basis pursuit denoising | IHT, CoSaMP, SP, ALPS,<br>OMP             | Variational Bayes, EP,<br>Approximate message<br>passing (AMP) |

 $\widehat{x}_{\text{Clash}} = \arg\min_{x:\|x\|_1 \le \lambda, \|x\|_0 \le K} \|u - \Phi x\|^2$ 

$$||x||_0 = \#\{x_i \neq 0\}$$

# A Tale of Two Algorithms

• Soft thresholding

 $f(x) = ||u - \Phi x||^2$ 

 $\min_{x:\|x\|_1 \le \lambda} f(x)$ 



### A Tale of Two Algorithms

• Soft thresholding

 $f(x) = ||u - \Phi x||^2$ 

 $\min_{x:\|x\|_1 \le \lambda} f(x)$ 



(1) 
$$\begin{aligned} & \text{Bregman distance} \\ & f(y) - f(x) - \langle \nabla f(x), y - x \rangle &= \|\Phi(y - x)\|^2 \qquad \forall x, y \in \mathcal{R}^N, \end{aligned}$$





# A Tale of Two Algorithms

• Soft thresholding  $\min_{x:||x||_1 \le \lambda} f(x)$ 

 Is x\* what we are looking for?

local "unverifiable" assumptions:

- ERC/URC condition
- compatibility condition ...

(local  $\rightarrow$  global / dual certification / random signal models)



#### A Tale of Two Algorithms $f(x) = ||u - \Phi x||^2$ Hard thresholding $\min_{x:\|x\|_0 \le K} f(x)$ (2) $U(x_2, x_1)$ $\arg\min_{\|x\|_0 \le K} U(x, y) = \arg\min_{\|x\|_0 \le K} \|x - (y - \frac{1}{L}\nabla f(y))\|$ $H_{\{\|x\|_0 \le K\}}(t) = \arg\min_{\|x\|_0 \le K} \|x - t\| \quad \mathbf{n}$ ALGO: sort and pick the largest K (1) $x_2 \quad x_1 \in \Sigma_K$ $y \in \Sigma_K \bigstar$ $x_{i+1} = \mathbf{H}_{\{\|x\|_0 < K\}} \left( x_i - \frac{1}{L} \nabla f(x_i) \right)$

#### $\binom{N}{K}$ A Tale of Two Algorithms



#### What could possibly go wrong with this naïve approach?

 $\binom{N}{K}$ A Tale of Two Algorithms  $f(x) = ||u - \Phi x||^2$  Hard thresholding f(y) (3)  $\min_{x:\|x\|_0 \le K} f(x)$ (2)Global "unverifiable" assumption:  $(1-\delta_K) \leq rac{\|\mathbf{\Phi}x\|_2^2}{\|x\|_2^2} \leq (1+\delta_K), \ \forall x \in \mathbf{\Sigma}_K$  $\Rightarrow$  we can tiptoe among percolations!  $x_2 \quad x_1 \in \Sigma_K$  $\delta_{2K} < 1/3$  $y \in \Sigma_K \longleftarrow$ GraDes:  $x_{i+1} = H_{\{\|x\|_0 \le K\}} \left( x_i - \frac{1}{L_{2K}} \nabla f(x_i) \right)$ another variant has  $\delta_{3K} < 1/2$ (1)  $f(y) - f(x) - \langle \nabla f(x), y - x \rangle = ||\Phi(y - x)||^2 \quad \forall x, y \in \mathbb{R}^N,$ 

#### **Restricted Isometry Property**

#### • **Model**: *K*-sparse coefficients

**Remark:** implies convergence of convex relaxations also e.g.,  $\delta_{2K} < .465$  is sufficient for BP

#### • **RIP:** stable embedding





 $|\mathcal{M}_K|$  A Model-based CS Algorithm • Model-based hard thresholding  $f(x) = ||u - \Phi x||^2$ f(y) (3)  $\min_{x:x\in\Sigma_{\mathcal{M}_{K}}}f(x)$ (2)Global "unverifiable" assumption:  $(1-\delta_{\mathcal{M}_K}) \leq rac{\| \mathbf{\Phi} x \|_2^2}{\| x \|_2^2} \leq (1+\delta_{\mathcal{M}_K}), \ \forall x \in \mathbf{\Sigma}_{\mathcal{M}_K}$  $H_{\Sigma_{\mathcal{M}_{K}}}(t) = \arg\min_{x:x\in\mathcal{M}_{K}} \|x-t\|$  $x_2 \quad x_1 \in \Sigma_{\mathcal{M}_K}$  $y \in \Sigma_K \longleftarrow$  $\delta_{\mathcal{M}_{2K}} < 1/3$  $x_{i+1} = \mathbf{H}_{\Sigma_{\mathcal{M}_K}} \left( x_i - \frac{1}{L_{\mathcal{M}_{\Sigma_K}}} \nabla f(x_i) \right)$  $f(y) - f(x) - \langle \nabla f(x), y - x \rangle = \|\Phi(y - x)\|^2 \qquad \forall x, y \in \mathbb{R}^N,$ (1) $f(y) - f(x) - \langle \nabla f(x), y - x \rangle \leq \frac{L_{\mathcal{M}_{2K}}}{2} \|y - x\|^2 \quad L_{\mathcal{M}_{2K}} = 2(1 + \delta_{\mathcal{M}_{2K}}), \forall x, y \in \Sigma_{\mathcal{M}_{2K}},$ (2) $f(y) - f(x) - \langle \nabla f(x), y - x \rangle \geq \frac{\mu_{\overline{\mathcal{M}}_{2K}}}{2} \|y - x\|^2 \quad \mu_{\mathcal{M}_{2K}} = 2(1 - \delta_{\mathcal{M}_{2K}}), \forall x, y \in \Sigma_{\mathcal{M}_{2K}},$ (3)

### **Tree-Sparse**

Model: K-sparse coefficients
 + significant coefficients
 lie on a rooted subtree



#### Sparse approx:

find best set of coefficients

- sorting
- hard thresholding

# Tree-sparse approx: find best rooted subtree of coefficients

- condensing sort and select [Baraniuk]
- dynamic programming

[Baraniuk]

### Sparse

• **Model**: *K*-sparse coefficients



• **RIP:** stable embedding



#### **Tree-Sparse**

- Model: K-sparse coefficients
   + significant coefficients lie on a rooted subtree
- Tree-RIP: stable embedding





### Tree-Sparse Signal Recovery





target signal



CoSaMP, (MSE=1.12)

N=1024 M=80



L1-minimization (MSE=0.751)



Tree-sparse CoSaMP (MSE=0.037)

### Tree-Sparse Signal Recovery

- Number samples for correct recovery
- Piecewise cubic signals + wavelets
- Models/algorithms:
  - compressible (CoSaMP)
  - tree-compressible (tree-CoSaMP)



#### Model CS in Context

Basis pursuit and Lasso

exploit geometry <> interplay of

arbitrary selection

<> interplay of  $\ell_1$  ball and  $\ell_2$  error

<> difficulty of interpretation cannot leverage further structure

Structured-sparsity *inducing* norms

"customize" geometry <> "mixing" of norms over groups /
for selection Lovasz extension of submodular
set functions
inexact selections

Structured-sparsity via OMP / Model-CS
 greedy selection <> cannot leverage geometry

exact selection <> cannot leverage geometry

#### Model CS in Context

Basis pursuit and Lasso

exploit geometry  $\langle \rangle$  interplay of  $\ell_1$  ball and  $\ell_2$  error

arbitrary selection <>

> interplay of  $\ell_1$  ball and  $\ell_2$  error

difficulty of interpretation cannot leverage further structure

Structured-sparsity *inducing* norms

"customize" geometry <> "mixing" of norms over groups /
for selection Lovasz extension of submodular
set functions
inexact selections

Structured-sparsity via OMP / Model-CS
 greedy selection <> cannot leverage geometry

exact selection <> **Or, can it?** 

#### Enter CLASH http://lions.epfl.ch/CLASH



#### Importance of Geometry

• A subtle issue

 $\widehat{x} = \arg \min \|x\|_1 \text{ s.t. } u = \Phi x$ 





Which one is correct?

#### Importance of Geometry

• A subtle issue

 $\widehat{x} = \arg \min \|x\|_1 \text{ s.t. } u = \Phi x$ 







Which one is correct?

**EPIC FAIL** 

#### **CLASH** Pseudocode

- Algorithm code
   @ http://lions.epfl.ch/CLASH
  - Active set expansion
  - Greedy descend
  - Combinatorial selection
  - Least absolute shrinkage
  - De-bias with convex constraint



#### Minimum 1-norm solution still makes sense!

#### **CLASH** Pseudocode

- Algorithm code
   @ http://lions.epfl.ch/CLASH
  - Active set expansion
  - Greedy descend
  - Combinatorial selection
  - Least absolute shrinkage
  - De-bias with convex constraint





### Geometry of CLASH



$$H_{\{\|x\|_0 \le K\}}(t) = \arg \min_{\|x\|_0 \le K} \|x - t\|$$

$$St_{\{\|x\|_1 \le \lambda\}}(t) = \arg\min_{\|x\|_1 \le \lambda} \|x - t\|$$



### Geometry of CLASH



#### **Combinatorial Selection**

• A different view of the model-CS workhorse

$$H_{\Sigma_{\mathcal{M}_{K}}}(y) = \arg\min_{x:x\in\Sigma_{\mathcal{M}_{K}}} \|x-y\|$$

(Lemma) support of the solution <> modular approximation problem

supp 
$$(\arg \min_{x: \operatorname{supp}(x) \in \mathcal{M}_K} ||x - y||_2^2) = \arg \max_{\mathcal{S}: \mathcal{S} \in \bar{\mathcal{M}}_K} F(S; y)$$
  
where  $F(S; y) = \sum_{i \in \mathcal{S}} |y_i|^2$ .

#### PMAP

- An algorithmic generalization of union-of-subspaces Polynomial time modular epsilon-approximation property: PMAP<sub>e</sub>
- Sets with PMAP-0  $F(\widehat{\mathcal{S}}_{\epsilon}; y) \ge (1 \epsilon) \max_{\mathcal{S} \in \overline{\mathcal{M}}_{K}} F(\mathcal{S}; y)$

#### – Matroids

| uniform matroids   | <> | regular sparsity                 |
|--------------------|----|----------------------------------|
| partition matroids | <> | block sparsity (disjoint groups) |
| cographic matroids | <> | rooted connected tree            |
|                    |    | group adapted hull model         |

- Totally unimodular systems
  - mutual exclusivity <> neuronal spike model
    interval constraints <> sparsity within groups

#### Model-CS is applicable for all these cases!

#### PMAP

An algorithmic generalization of union-of-subspaces

Polynomial time modular epsilon-approximation property:  $PMAP_{\epsilon}$ 

- Sets with PMAP-epsilon  $F(\widehat{\mathcal{S}}_{\epsilon}; y) \ge (1 \epsilon) \max_{\mathcal{S} \in \overline{\mathcal{M}}_{K}} F(\mathcal{S}; y)$ 
  - Knapsack

multi-knapsack constraints

weighted multi-knapsack

quadratic knapsack (?)

– Define algorithmically!



#### PMAP

An algorithmic generalization of union-of-subspaces

Polynomial time modular epsilon-approximation property:  $PMAP_{\epsilon}$ 

- Sets with PMAP-epsilon  $F(\widehat{\mathcal{S}}_{\epsilon}; y) \ge (1 \epsilon) \max_{\mathcal{S} \in \overline{\mathcal{M}}_{K}} F(\mathcal{S}; y)$ 
  - Knapsack
  - Define algorithmically!
- Sets with PMAP-???



 pairwise overlapping groups <> mincut with cardinality constraint

 $\max_{\mathcal{S}:\mathcal{S}\in\bar{\mathcal{M}}_{K}} F(S;\beta) = -\min\left\{\sum_{i>j} \|(\beta)_{g_{i}\cap g_{j}}\|_{2}^{2} z_{i} z_{j} - \sum_{i} \|(\beta)_{g_{i}}\|_{2}^{2} z_{i} : \sum_{i} z_{i} \leq G\right\}.$ 

#### **CLASH Approximation Guarantees**

• PMAP / downward compatibility  $SNR = \frac{\|x^*\|}{\sqrt{f(x^*)}}$ 

$$\frac{\|x_{i+1} - x^*\|_2}{\|x^*\|_2} \le \rho \frac{\|x_i - x^*\|_2}{\|x^*\|_2} + \frac{c_1(\delta_{2K}, \delta_{3K}, \epsilon)}{\mathrm{SNR}} + c_2(\delta_{2K}, \delta_{3K}, \epsilon) + c_3(\delta_{2K}, \delta_{3K}, \epsilon) \sqrt{\frac{1}{\mathrm{SNR}}}$$

$$\rho = \frac{\delta_{3K} + \delta_{2K} + \sqrt{\epsilon}(1 + \delta_{2K})}{\sqrt{1 - \delta_{2K}^2}} \sqrt{\frac{1 + \left((1 - \epsilon) + 2\sqrt{1 - \epsilon}\right)\delta_{3K}^2 + 2\delta_{3K}\sqrt{\epsilon} + \epsilon}{1 - \delta_{3K}^2}}$$

 $c_2(\delta_{2K}, \delta_{3K}, \epsilon) = O(\delta_{3K}\sqrt{\epsilon} + \epsilon)$ 

- precise formulae are in the paper

#### http://lions.epfl.ch/CLASH

• Isometry requirement (PMAP-0) <>  $\delta_{3K} < 0.3658$ 

#### Examples

#### sparse matrix







#### Examples



#### CCD array readout via noiselets

### Conclusions

<>

<>



PMAP-epsilon

combinatorial selection + convex geometry  $\lambda \rightarrow \infty \Rightarrow$  model-CS

inherent difficulty in combinatorial selection

beyond simple selection towards
 provable solution quality
 +
 runtime/space bounds

algorithmic definition of sparsity + many models

matroids, TU, knapsack,...

Postdoc position @ LIONS / EPFL



contact: volkan.cevher@epfl.ch

Postdoc position @ LIONS / EPFL contact: volkan.cevher@epfl.ch

In theory, theory and practice are the same. In practice, they are not.



the second s