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Linear Inverse Problems

Machine learning dictionary of features
Compressive sensing non-adaptive measurements
Information theory coding frame
Theoretical computer science sketching matrix / expander



Linear Inverse Problems

• Challenge:



Approaches

Deterministic Probabilistic

Prior sparsity
compressibility

Metric likelihood 
function



A Deterministic View
Model-based CS (circa Aug 2008)



1. Sparse or compressible

not sufficient alone

2. Projection

information preserving 
(stable embedding / special null space)

3. Decoding algorithms

tractable 

My Insights on Compressive Sensing



• Sparse signal: only K out of N coordinates nonzero
– model:  union of all K-dimensional subspaces

aligned w/ coordinate axes

Example:  2-sparse in 3-dimensions

Signal Priors

support:



• Sparse signal: only K out of N
coordinates nonzero

– model:  union of all K-dimensional subspaces
aligned w/ coordinate axes

• Structured sparse signal: reduced set of subspaces
(or model-sparse)
– model: a particular union of subspaces 

ex: clustered or dispersed sparse patterns

sorted index

Signal Priors
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Sparse Recovery Algorithms
• Goal: given

recover 
• and convex optimization formulations

– basis pursuit, Lasso, BP denoising…

– iterative re-weighted              algorithms 

• Hard thresholding algorithms: ALPS, CoSaMP, SP,… 
• Greedy algorithms: OMP, MP,…

http://lions.epfl.ch/ALPS



Geometric Combinatorial Probabilistic

Encoding atomic norm / 
convex relaxation

non-convex 
union-of-subspaces

compressible / 
sparse priors

Example
Algorithm Basis pursuit, Lasso,

basis pursuit denoising…
IHT, CoSaMP, SP, ALPS, 
OMP…

Variational Bayes, EP, 
Approximate message 
passing (AMP)…

Sparse Recovery Algorithms
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The Clash Operator

Sparse Recovery Algorithms



A Tale of Two Algorithms
• Soft thresholding



A Tale of Two Algorithms
• Soft thresholding

Bregman distance

Structure in optimization:



A Tale of Two Algorithms
• Soft thresholding

ALGO: cf. J. Duchi et al. ICML 2008

Bregman distance

majorization-minimization



A Tale of Two Algorithms
• Soft thresholding

Bregman distance

slower



A Tale of Two Algorithms
• Soft thresholding

• Is x* what we are 
looking for? 

local “unverifiable”
assumptions:

– ERC/URC condition

– compatibility condition …

(local  global / dual certification / random signal models)



A Tale of Two Algorithms
• Hard thresholding

ALGO: sort and pick the largest K 



A Tale of Two Algorithms
• Hard thresholding

percolations

What could possibly go wrong with this naïve approach?



A Tale of Two Algorithms
• Hard thresholding

we can tiptoe among percolations!

another variant has

Global “unverifiable” assumption:

GraDes:



• Model: K-sparse coefficients 

• RIP: stable embedding 

Restricted Isometry Property

K-planes

IID 
sub-Gaussian 

matrices

Remark: implies convergence of 
convex relaxations also

e.g., 



A Model-based CS Algorithm
• Model-based hard thresholding

Global “unverifiable” assumption:



Tree-Sparse

• Model: K-sparse coefficients 
+ significant coefficients 

lie on a rooted subtree

• Sparse approx: find best set of coefficients

– sorting
– hard thresholding

• Tree-sparse approx: find best rooted subtree
of coefficients 

– condensing sort and select [Baraniuk]

– dynamic programming [Donoho]



• Model: K-sparse coefficients 

• RIP: stable embedding 

Sparse

K-planes

IID 
sub-Gaussian 

matrices



Tree-Sparse
• Model: K-sparse coefficients 

+ significant coefficients 
lie on a rooted subtree

• Tree-RIP: stable embedding 

K-planes

IID 
sub-Gaussian 

matrices



Tree-Sparse Signal Recovery

target signal CoSaMP, 
(MSE=1.12)

L1-minimization
(MSE=0.751)

Tree-sparse CoSaMP 
(MSE=0.037)

N=1024
M=80



Tree-Sparse Signal Recovery

• Number samples for correct recovery

• Piecewise cubic 
signals +
wavelets

• Models/algorithms:
– compressible

(CoSaMP)
– tree-compressible

(tree-CoSaMP)



Model CS in Context 

• Basis pursuit and Lasso
exploit geometry <> interplay of 

arbitrary selection <> difficulty of interpretation
cannot leverage further structure

• Structured-sparsity inducing norms
“customize” geometry <> “mixing” of norms over groups /

Lovasz extension of submodular
set functions
inexact selections

• Structured-sparsity via OMP / Model-CS
greedy selection <> cannot leverage geometry

exact selection <> cannot leverage geometry

for selection



Model CS in Context 

• Basis pursuit and Lasso
exploit geometry <> interplay of 

arbitrary selection <> difficulty of interpretation
cannot leverage further structure

• Structured-sparsity inducing norms
“customize” geometry <> “mixing” of norms over groups /

Lovasz extension of submodular
set functions
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• Structured-sparsity via OMP / Model-CS
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exact selection <> cannot leverage geometry

for selection

Or, can it?



Enter 
CLASH

http://lions.epfl.ch/CLASH



Importance of Geometry

• A subtle issue

2 solutions!

Which one is correct?



Importance of Geometry

• A subtle issue

2 solutions!

Which one is correct?

EPIC FAIL



CLASH Pseudocode

• Algorithm code @    http://lions.epfl.ch/CLASH

– Active set expansion

– Greedy descend

– Combinatorial selection

– Least absolute shrinkage

– De-bias with convex 
constraint

&

Minimum 1-norm solution still makes sense!



CLASH Pseudocode

• Algorithm code @    http://lions.epfl.ch/CLASH

– Active set expansion

– Greedy descend

– Combinatorial selection

– Least absolute shrinkage

– De-bias with convex 
constraint



Geometry of CLASH

• Combinatorial selection
+

least absolute shrinkage 

&



Geometry of CLASH

• Combinatorial selection
+

least absolute shrinkage 

combinatorial origami

&



Combinatorial Selection

• A different view of the model-CS workhorse

(Lemma) support of the solution  <> modular approximation 
problem

where indexing set



PMAP

• An algorithmic generalization of union-of-subspaces

Polynomial time modular epsilon-approximation property:

• Sets with PMAP-0

– Matroids
uniform matroids <> regular sparsity
partition matroids <> block sparsity (disjoint groups)
cographic matroids <> rooted connected tree

group adapted hull model

– Totally unimodular systems
mutual exclusivity <> neuronal spike model
interval constraints <> sparsity within groups

Model-CS is applicable for all these cases!



PMAP

• An algorithmic generalization of union-of-subspaces

Polynomial time modular epsilon-approximation property:

• Sets with PMAP-epsilon

– Knapsack

multi-knapsack constraints

weighted multi-knapsack

quadratic knapsack (?)

– Define algorithmically!

… 

selector
variables



PMAP

• An algorithmic generalization of union-of-subspaces

Polynomial time modular epsilon-approximation property:

• Sets with PMAP-epsilon

– Knapsack

– Define algorithmically!

• Sets with PMAP-???

– pairwise overlapping groups <> mincut with 
cardinality constraint



CLASH Approximation Guarantees

• PMAP / downward compatibility 

– precise formulae are in the paper

http://lions.epfl.ch/CLASH

• Isometry requirement (PMAP-0) <>



Examples

Model: (K,C)-clustered model

O(KCN) – per iteration

~10-15 iterations

Model: partition model / TU

LP – per iteration

~20-25 iterations

sparse matrix



Examples

CCD array readout via noiselets



Conclusions

• CLASH <> combinatorial selection
+

convex geometry
λ→∞ ⇒ model-CS

• PMAP-epsilon <> inherent difficulty in 
combinatorial selection

– beyond simple selection towards    provable solution quality
+

runtime/space bounds

– algorithmic definition of sparsity +  many models
matroids, TU, knapsack,…

• Postdoc position @ LIONS / EPFL
contact: volkan.cevher@epfl.ch
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