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Motivation 

• Astronomical studies require high resolution, high sensitivity 
imaging devices

• In radio bands, wavelengths of interest range from meter to 
millimeter

• Largest collecting elements (typically antennas) that are 
practical to build range from 10m – 100m in diameter.

• Problem:

– Resolution of single elements is often too poor (arcmin)

– Single elements are not imaging devices (mostly)

• Imaging at sub-arcsec resolution require imaging devices with 
apertures of 10 – 1000s Km.

• Solution: Aperture Synthesis/Interferometric Telescopes



3/40S. Bhatnagar: BASP Frontiers Workshop, Villars sur Ollon, Sept. 2011

Basic set-up: Two element 
interferometer

 

=S uij , vij ⋅V Skyu ij , v ij 

● A pair of steerable antennas, separated on the ground
● Signals from each antenna (E

i
) are multiplied

 
● The complex product is averaged in time and frequency (E

ij
) 

 and recorded for offline processing

● Difference between the time of arrival of the plane wavefront
 at the two elements w.r.t. to the reference direction is 
 proportional to the projected separation (B) between the 
 antennas

 
● Terminology:

● B: Baseline vector
● C: The Correlator (typically a dedicated HPC digital

     Machine)
● <E

i
E

j

*>: The Visibility from baseline i-j
● Ref. Dir.: “Phase Center” – delays between the

signals from this direction are electronically
compensated.
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Basic set-up: Aperture Synthesis

 ●
 
An N-element array instantaneously measures

 N(N-1)/2 baselines (complex values)

● All antennas track the ref. Dir. to compensate 
the earth rotation

● Typical imaging observations track for several 
hours

● More terminology
● Baseline vector measured in a frame with 

the uv-plane tangent to the sky
● Baseline co-ordinates

● Only relative separation between antennas 
matter

● Max. baseline corresponds to the size of the 
“aperture”

● Baseline vector changes as earth rotates 
filling the aperture
● Aperture Synthesis/Earth Rotation 

Synthesis

Bij t =uij t , v ijt  ,wij t 

uij t =ui t−u j t 
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Aperture Synthesis

 ● Cosmic signals interact with Earth's 
 ionosphere (low freq.) and atmosphere
 (high freq.) resulting in image degradation
 

● Further degradation due to non-ideal
 antenna far-field patterns (Primary Beam),
 pointing errors, etc.

● Such effects are in general
● Direction Dependent
● Time varying
● Frequency and polarization dependent
● Fundamentally antenna-based

● Signals from the sky are in general
● Also obviously direction dependent
● Freq. and polarization dependent
● Fundamentally not antenna-based
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Aperture Synthesis: Theory

• Basis of imaging: van Cittert-Zernike Theorem:
For small field-of-view (FoV) or for n<<1, image is 2D Fourier 
Transform of the Visibility (Coherence Function) (Ref: Born&Wolf)

• With finite number of antennas, the uv-plane is not fully 
sampled:

• Small FoV Measurement Equation:

• S:      The uv-coverage, Sampling Function (Transfer Func.)

PSF:   Fourier Transform of S   (Impulse Response)

V
ij
Obs
=S

ij [∫
I M

e2uijlv ij m d ]=∑t [ S ij
t  . V

ij
Sky
t ]

V Obs
=[ S]V Sky

=[S ] [F ] I sky
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Synthesis Imaging: Data Domain

 

V Obs = S . V o

[Complex] [Complex][Real]

● Incomplete sampling of the data domain.
● Related to s2MRI (talk from yesterday)?
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Synthesis Imaging: Image Plane

 

PSF=FT [S ] Sampling function

I o
=FT [V o

] I d
=FT [VObs

]=PSF∗I o
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Synthesis Imaging: Image Plane

 

PSF=FT [S ] Sampling function

I o
=FT [V o

] I d
=FT [VObs

]=PSF∗I o
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Imaging and Image Reconstruction

• Imaging: Transform the Visibility data to the image domain
– True sky convolve with the PSF

– The “Dirty Image”

• Visibility data is not on a regular grid
– Needs re-sampling on a regular grid to utilize the computational 

advantages of the FFT algorithm

• Re-sampling done via convolutional interpolation
– The “Gridding” operation

                                   FFT

                                  ↔ 

V ij
G
= [C∗V Sky ]ij
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Imaging and Image Reconstruction

• Image dynamic range of Dirty Image: few x 100: 1

– Typical instrumental dynamic range: 106: 1

• Image reconstruction:

• In general, A is singular (is rectangular): image reconstruction 
algorithms are non-linear and iterative in nature:

– Most commonly used algorithm: CS-Clean

                                      →  

Minimize :2=∣V Obs− A I M∣
2
where I M=∑ k

P k ; Pk≡Pixel Model
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Deconvolution

• Process of removing the effects of the emission in one part of the 
image on another part of the image

– PSF sidelobes couples distant, otherwise independent pixels

– Mathematically, even for an image with only multiple point sources, the 
Hessian is not diagonal (or diagonally dominant)

•  Only average quantities are available in the image domain
– Time and frequency averaging to realize higher sensitivity

– Averaging across uv-plane

• Purely image-plane based deconvolution applicable only for the 
static case (along time, frequency and polarization axis)

– Hogbom Clean: Static case, limited by quantization errors

– Clark Clean:  Static case + partially handle quantization errors

– Cotton-Schwab (CS) Clean: Static case + handle quantization errors

– Multi-Term MFS (minor) + CS-Clean (major): Time-static, Freq-dynamic 
case

– Projection (major cycle) + MT-MFS (minor): Time- and Freq-dynamic 
case
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Deconvolution as ChiSq Minimization

•

• Linear equation, parametrized by IM

– However, A is singular

• Need non-linear solvers to solve for IM (“two level” iterations)

– Compute residuals VR = VObs – AIM

                                           

– Make residual Image  IR = [F]VR

– Find update direction: Steepest Descent

– Update model:

–    Is the loop-gain/step-size

VM
=A IMN N is a Gaussian random process (from Physics)

I c=max −2[I Res
]

∂
2

∂ Param


I i
M=T  I I−1

M  for our discussions thisis=Ii−1
M ∗Ii

c



M
ajor C

ycle
(alw

ays expensive)

M
in o r C

yc le
(ca n b e e xpe ns ive)
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Image Reconstruction

• Data prediction (predict data from a given image model)

• Imaging:

• Approximate reverse transform (derivative computation)

Accurate forward transform
– Construct approximate AT to include DD effects

• Noise in the image plane is not independent per pixel
– Correlated at the scale of the PSF

    

Data/Res. data Dirty Image/Res. Image

Model ImageModel Data
Prediction

Imaging

Obs.Data-Model data

Major Cycle Minor Cycle

Update

V= AI oN V ij=deGrid ijFT  I 

ATV=AT AI oATN I Dirty
=PSF∗IPSF∗Noise

[Reverse]

[Forward]
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•                                                   

• Unknowns:

– MS
ij
: Instrumental/atmospheric DD effects, time and freq. dependence

– I(s): Complex structure of the source, frequency dependence

• Modeling the domain where the information one seeks naturally resides is 
the optimal/natural domain (maximizes the information content)                
                                            

V ij
Obs

  = M ij , t W ij∫ Mij
S
 s , , t  I  s ,  e2   bij . s d s

Natural domain of parameters

Image Domain
Visibility Domain
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•                                                   
                                                       

                                                       

• The function I(s) represent sky emission
• Information it represents is inherently in the sky domain

– Parametrize structure: Asp-Clean, MS-Clean
– Parametrize frequency dependence: MT-MFS, MS-MFS

V ij
Obs

  = M ij , t W ij∫ Mij
S
 s , , t  I  s ,  e2   bij . s d s

Parametrized model for sky emission

Image Domain
Visibility Domain

I M
=∑k

Akx− xk  I M
=∑k

A k f Scale , Pos. NComps=104 NComps=102

● Better parametrization
 in the Natural Domain
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Image Reconstruction

• Iterative build the model image in minor cycle

• Compute residuals in major cycle (expensive)

    

 

● Stop when peak residuals
 are greater than the effects
 of the approximations

● Trigger reconciliation with
  the data (Major Cycle)  

● Stop when convergence
 criteria is satisfied
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DD Effects

• In principle

• In practice:

• G
ij 
is the antenna-based Direction-Independent term

– Solved using the SelfCal algorithm (early 1980s)

• X  is the antenna-base DD term
– Antenna pointing errors, Primary Beam, Geometrical effects

– Rest of this talk + talks by Cotton (yesterday), Smirnov (next talk)

• I is the image-plane based DD term (non antenna-based)

– Talk by Rau (last talk of this session)

V ij
Obs

 , t =s ij∫
I e2u

ij
lv

ij
m d

V ij
Obs

 , t =S ij Gij∫
X ij  , , t  I   e2  u ij l v ij mw ij n−1  d
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DD Terms: Projection Algorithms

• Two fundamentally different approaches being pursued: 
– Projection Algorithms 

– Partitioning Algorithms 

• Projection Algorithms: Model the DD-terms in the natural domain

– Solve for the parameters of the models

• Domain of compact representation/sparse domain
– Data domain for antenna-based terms

– Image for non antenna-based terms

• Physical modeling of the effects

• Minimize the degrees-of-freedom (DoF)
– Independent measurements: O(N2)

– No. of parameters: O(few x N)

• Lower complexity

– Complexity independent of the complexity of the source
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DD Terms

• X  is the antenna-base DD term

• Sources of DD effects:
– PB effects:

– Antenna Pointing Errors

– Effects of spherical geometry for wide-field imaging: The W-Term:   

• Precise PB shape, antenna pointing errors are unknown:
– Need to solve for the appropriate parameters of X

– E.g. Pointing SelfCal Algorithm

• W-term is known geometrical effects 
– Can be pre-computed

V ij
Obs= [V Sky∗GDD ]ij GDD=FT [ X ]

GDD=FT [ PB]

GDD=FT [ew ijn−1 ]

GDD=FT [ PB] e
i
−

j


Advances in Calibration and Imaging Techniques in 
Radio Astronomy, Rau et al., Proc. IEEE, Vol. 97, No. 8, 
Aug.2009, 1472 
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DD Terms: Partitioning Algorithms

• Apply classical Direction Independent techniques to solve for DD 
terms (piece-wise constant approximation)

– Partition the image-plane such that DI assumption is valid in each partition

– Apply DI techniques to each partition and stitch 

• Conceptually easier to understand
– Possibly because classical understanding can carry-over

• Absorbs the combination of all effects
– Phenomenological approach (sometimes useful) 

• Has trouble at partition boundaries

• DoF: O(few x N x No. of partitions)

• Higher complexity 
– Complexity a strong function of complexity of the celestial source

– Complexity increases when wide-band and polarization effects are included 
(required for modern telescopes)
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Range of imaging challenges

Field with compact sources filling the FoV Compact + extended emission filling the FoV

● Useful algorithms must efficiently handle a large range of scales
● Deal efficiently with multiple iteration through TBytes of data
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The W-Term: Projection Algorithm

`

• We measure:

• We interpret:

• We should interpret E
1
 as     [E

1
' x Fresnel Propagator] 

• Pre-compute

• Imaging:  

GDD=FT [e w ijn−1 ]

I d=FT [V Sky∗GDD ]

V12
o
=〈E1 E2

∗
〉

V12
o
=〈E1

' E2
∗
〉

[Cornwell, Golap & Bhatnagar, A&A]
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The W-Term: Partitioning 

`

• Partition the sky into facets where 2D approximation is valid and 
classical techniques applicable

– Equivalent partitioning in the data domain possible, but similar 
performance and computing requirements

• Stitch together the facets to make a single image

• Can be extended to also solve for DD effects, assumed constant 
across each facet (“Peeling”, ref. Next talk)
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The W-Term: No correction 

`
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The W-Term: Partitioning 

`
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The W-Term: Projection 

`
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PB effects

• Time variability of the PB increases away from the center 

• Frequency dependence increases with fractional bandwidth

IObs
=∑t∑

PSF t ∗[PB  s I Sky
 s/o

s ,]

=−1.1 =−2.7

=−0.9 ≈−3.2

≈−2.9
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Wide-band PB effects

• To the first order, scaling of the PB with frequency

I Obs=∑t∑
PSF t ∗[PB  s , , t  I Sky  ]

∑


PB  s , , t 
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High sensitivity imaging

• Image corresponds to the sum of all the data.
• Only average of antenna-based quantities are available in the image 

domain

∑t ∑
PB s , , t 

I Obs=∑t∑
PSF t ∗[PB  s , , t  I Sky  ]

● Image domain corrections for time, frequency 
 and antenna dependence is hard

● Projection methods apply corrections in the
 Natural Domain
    - A-Projection for PB-corrections
    - W-Projection for W-term correction
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Wide-field Imaging: PB effects

• The observed data corresponds to Isky multiplied by the 
antenna primary beam

 

• PB varies with time due to rotation with PA and pointing errors.

• PB gain in general is also Directionally Dependent  

I D
=∑ t∑

PSF  , t ∗[ PB s , t ⋅ISky ]
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Wide-field Imaging: EVLA
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Wide-field Imaging: Pointing Errors

● Effect of antenna pointing error is a 
 direction dependent effect

● A purely Hermitian effect in the data 
 domain, in the absence of DI gains
  –  To the first order, amplitude-only error in  
      image domain

 

●However, there is significant in-beam 
 phase structure –  particularly for 
 wide-field, full-Stokes imaging
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Wide-field Imaging: Pointing Errors

● Effect of antenna pointing error is a 
 direction dependent effect

● A purely Hermitian effect in the data 
 domain, in the absence of DI gains
  –  To the first order, amplitude-only error in  
      image domain

 
● Faceting approach: 
   –  Solve for gains for A and B separately
   –  Interpolate in between

● Pointing SelfCal
   –  Use A-Projection with pointing terms
   –  Solve for the shape of the function 
      which best-fits the gain variations at A 
      and B
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Wide-field Imaging: Pointing Errors

R-beam

L-beam

Pointing error

● El-Az mount antennas
● Polarization squint due to off-axis feeds
    - The R- and L-beam patterns have a pointing 
        error of +/- ~0.06
 

● DoF used: 2 per antenna
● SNR available for more DoF to model the PB shape

● El-Az mount antennas
● Polarization squint due to off-axis feeds
    - The R- and L-beam patterns have a pointing 
        error of +/- ~0.06
 

● DoF used: 2 per antenna
● SNR available for more DoF to model the PB shape

● EVLA polarization squint solved as pointing error (optical pointing error).
● Squint would be symmetric about the origin in El-Az plane in the absence 
of antenna servo pointing errors.

● Pointing errors for various antennas detected in the range 1-7 arcmin.
● Pointing errors  confirmed independently via the EVLA online system. [Bhatnagar et al, 2004]
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A-Projection algorithm

Before Correction After Correction

Minimize :V ij
O
−Eij∗[ FI

M
] w.r.t. IM

A-Projection: Bhatnagar et al.,
A&A,487, 2008 

Goal:  Full-field, full-polarization imaging at full-sensitivity
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MS-MFS + A-Projection

Image: Rua et al.
MS-MFS: Rau&Cornwell, A&A, 2011
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DD Effects in RA and Blind Deconv.

• The effect of DD terms in the image domain is to make the 
“effective PSF” vary across the FoV

– Effective PSF = PSFo x F(l,m)

– PSFo in RA can be shown to be shift invariant

• RA algorithms utilize this fact to solve for parameterized F(l,m)

• Projection algorithms use physical parametrization

– PB, Antenna Pointing errors, PB shape, etc.

• Partitioning algorithms similar to Blind Deconvolution

– Solved for the PSF at multiple locations

– However, indirectly inferring a model for F(l,m) is still 
required to make noise-like residual image
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Discussion Items

• Two-level iterative image reconstruction in RA appears to be similar to 
some of the descriptions (CLASH?)

– RA terminology: Major Cycle and Minor Cycle

• The A-Matrix (Measurement Matrix) is fixed and strictly defined by the 
physics of the observations

– S
ij
: Array configuration

– Transforms include EM propagation (W-Term), antenna far-field 
pattern, polarization and frequency dependence...

– Wide-band AW-Projection, MT-MFS

• Modern image reconstruction decomposes sky emission in sparse basis

– Scale sensitive deconvolution

• We use approximate operators to compute update directions.  Data 
prediction is accurate (leads to convergence).

– Construct pseudo-inverse of the A-Matrix
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Discussion Items

• Noise in the image is not independent

– Correlated at the scale of the PSF (convolved with the PSF)

• PSF sidelobes also couple distant pixels in the image

– Hessian is not diagonal (or even diagonally dominant)

• “One step threshold methods”: Lucy-Richardson Algorithm

– Known to be insufficient for decades in RA

• A-priori information used:

– Sky does not look like the PSF

– Limited support of the emission, positivity

• Many of the techniques/issues/algorithms described appear rather similar.

– Re-invention?  Just language differences?  Or real differences not 
understood?
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