Wavelets and Filter Banks on Graphs

Pierre Vandergheynst

Signal Processing Lab, EPFL

Joint work with David Shuman

BASP Frontiers Workshop

Villars, September 2011

Processing Signals on Graphs

Social Network

Transportation Network

- Summary of <u>one</u> wavelet construction on graphs
 - multiscale, filtering, sparsity, implementation
- Pyramidal algorithms
 - polyphase components and downsampling
 - the Laplacian Pyramid
 - 2-channels, critically sampled filter banks ?

Spectral Graph Wavelets

Remember good old Euclidean case:

$$(T^{s}f)(x) = \frac{1}{2\pi} \int e^{i\omega x} \hat{\psi}^{*}(s\omega) \hat{f}(\omega) d\omega$$

$$(T^s \delta_a)(x) = \frac{1}{s} \psi^* \left(\frac{x-a}{s}\right)$$

Spectral Graph Wavelets

G=(E,V) a weighted undirected graph, with Laplacian $\mathcal{L}=D-A$ Dilation operates through operator: $T_g^t=g(t\mathcal{L})$

Translation (localization):

Define
$$\psi_{t,j} = T_g^t \delta_j$$
 response to a delta at vertex j
 $\psi_{t,j}(i) = \sum_{\ell=0}^{N-1} g(t\lambda_\ell) \phi_\ell^*(j) \phi_\ell(i) \qquad \mathcal{L}\phi_\ell(j) = \lambda_\ell \phi_\ell(j)$
 $\psi_{t,a}(u) = \int_{\mathbb{R}} d\omega \,\hat{\psi}(t\omega) e^{-j\omega a} e^{j\omega u}$

And so formally define the graph wavelet coefficients of f:

$$W_f(t,j) = \langle \psi_{t,j}, f \rangle \qquad \qquad W_f(t,j) = T_g^t f(j) = \sum_{\ell=0}^{N-1} g(t\lambda_\ell) \hat{f}(\ell) \phi_\ell(j)$$

Frames

$$\gamma(\lambda_{\ell}) = \int_{1/2}^{1} \frac{dt}{t} g^2(t\lambda_{\ell}) \implies \tilde{g}(\lambda_{\ell}) = \sqrt{\gamma(\lambda_{\ell}) - \gamma(2\lambda_{\ell})}$$

for any admissible kernel g

Scaling & Localization

Effect of operator dilation ?

Theorem: $d_G(i, j) > K$ and g has K vanishing derivatives at θ

$$\frac{\psi_{t,j}(i)}{\|\psi_{t,j}\|} \le Dt \quad \text{for any t smaller than a critical scale} \\ \text{function of } d_G(i,j)$$

Reason ? At small scale, wavelet operator behaves like power of Laplacian

Scaling & Localization

Example

Non-local Wavelet Frame

• Non-local Wavelets are ...

Sparsity and Smoothness on Graphs

Remark on Implementation

Not necessary to compute spectral decomposition for filtering

Polynomial approximation :
$$g(t\omega) \simeq \sum_{k=0}^{K-1} a_k(t) p_k(\omega)$$

ex: Chebyshev, minimax

Then wavelet operator expressed with powers of Laplacian:

 $T_g^t \simeq \sum_{k=0}^{K-1} a_k(t) \mathcal{L}^k$

And use sparsity of Laplacian in an iterative way

Remark on Implementation

$$\tilde{W}_f(t,j) = \left(p(\mathcal{L})f^{\#}\right)_j \qquad |W_f(t,j) - \tilde{W}_f(t,j)| \le B||f||$$

sup norm control (minimax or Chebyshef)

$$\tilde{W}_f(t_n, j) = \left(\frac{1}{2}c_{n,0}f^\# + \sum_{k=1}^{M_n} c_{n,k}\overline{T}_k(\mathcal{L})f^\#\right)_j$$

$$\overline{T}_k(\mathcal{L})f = \frac{2}{a_1}(\mathcal{L} - a_2I)\left(\overline{T}_{k-1}(\mathcal{L})f\right) - \overline{T}_{k-2}(\mathcal{L})f$$

Computational cost dominated by matrix-vector multiply with (sparse) Laplacian matrix. In particular $O(\sum M_n |E|)$ n=1

http://wiki.epfl.ch/sgwt

Note: "same" algorithm for adjoint !

Distributed Computation

Scenario: Network of N nodes, each knows

- local data f(n)
- local neighbors
- M Chebyshev coefficients of wavelet kernel
- A global upper bound on largest eigenvalue of graph laplacian

To compute:
$$\left(\tilde{\Phi}f\right)_{(j-1)N+n} = \left(\frac{1}{2}c_{j,0}f + \sum_{k=1}^{M}c_{j,k}\overline{T}_{k}(\mathcal{L})f\right)_{n}$$

 $\left(\overline{T}_1(\mathcal{L})f\right)_n = \left(\frac{2}{\alpha}(\mathcal{L}-\alpha I)f\right)_n$

sensor only needs f(n) from its neighbors

$$\left(\overline{T}_k(\mathcal{L})f\right) = \frac{2}{\alpha}(\mathcal{L} - \alpha I)\left(\overline{T}_{k-1}(\mathcal{L})f\right) - \overline{T}_{k-2}(\mathcal{L})f$$

Computed by exchanging last computed values

Distributed Computation

Communication cost: 2M|E| messages of length 1 per node

Example: distributed denoising, or distributed regression, with Lasso

$$\arg\min_{a} \frac{1}{2} \|y - \Phi^* a\|_2^2 + \|a\|_{1,\mu}$$
$$a_i^{(k)} = \mathcal{S}_{\mu_i,\tau} \left(\left[a^{k-1} + \tau \Phi(y - \Phi^* a^{k-1}) \right]_i \right)$$
$$\mathcal{S}_{\mu_i\tau}(z) \coloneqq \begin{cases} 0 & , \text{ if } |z| \le \mu_i \tau \\ z - \operatorname{sgn}(z)\mu_i \tau & , \text{ o.w.} \end{cases}$$

Total communication cost:

Distributed Lasso [Mateos, Bazerque, Gianakis] Cost $\sim |E|N$

Graph wavelets

- Redundancy breaks sparsity
 - can we remove some or all of it ?
- Faster algorithms
 - traditional wavelets have fast filter banks implementation
 - whatever scale, you use the same filters
 - here: large scales -> more computations
- Goal: solve both problems at one

Basic Ingredients

Euclidean multiresolution is based on two main operations

Filtering (typically low-pass and high-pass) Down and Up sampling

Basic Ingredients

Subsampling is equivalent to splitting in two cosets (even, odd)

Questions: How do we partition a graph into meaningful cosets ?
Are there efficient algorithms for these partitions ?
Are there theoretical guarantees ?
How do we define a new graph from the cosets ?

Cosets - A spectral view

Subsampling is equivalent to splitting in two cosets (even, odd)

Classically, selecting a coset can be interpreted easily in Fourier:

$$f_{\rm sub}(i) = \frac{1}{2}f(i)(1+\cos(\pi i))$$

eigenvector of largest eigenvalue

Cosets and Nodal Domains

Nodal domain: maximally connected subgraph s.t. all vertices have same sign w.r.t a reference function

We would like to find a very large number of nodal domains, ideally |V| ! Nodal domains of Laplacian eigenvectors are special (and well studied)

Theorem: the number of nodal domains associated to the largest laplacian eigenvector of a connected graph is maximal,

$$\nu(\phi_{\max}) = \nu(G) = |V|$$

IFF G is bipartite

In general: $\nu(G) = |V| - \chi(G) + 2$ (extreme cases: bipartite and complete graphs)

Cosets and Nodal Domains

Nodal domain: maximally connected subgraph s.t. all vertices have same sign w.r.t a reference function

We would like to find a very large number of nodal domains, ideally |V| ! Nodal domains of Laplacian eigenvectors are special (and well studied)

For any connected graph we will thus naturally define cosets and their associated selection functions

$$V_{+} = \{i \in V \text{ s.t. } \phi_{N-1}(i) \ge 0\} \qquad V_{-} = \{i \in V \text{ s.t. } \phi_{N-1}(i) < 0\}$$
$$M_{+}(i) = \frac{1}{2} \left(1 + \operatorname{sgn}(\phi_{N-1}(i))\right) \qquad M_{-}(i) = \frac{1}{2} \left(1 - \operatorname{sgn}(\phi_{N-1}(i))\right)$$

Examples of cosets

 $\phi_k(u) = \sin(\pi k u/n + \pi/2n) \qquad \lambda_k = 2 - 2\cos(\pi k/n) \qquad 1 \le k \le n$

Examples of cosets

 $\lambda_k = 2 - 2\cos(2\pi k/n)$

Examples of cosets

The Agonizing Limits of Intuition

- Multiplicity of λ_{\max}
 - how do we choose the control vector in that subspace ?
 - even a prescription can be numerically ill-defined
 - graphs with "flat" spectrum in close to their spectral radius
- Laplacian eigenvectors do not always behave like global oscillations
 - seems to be true for random perturbations of simple graphs
 - true even for a class of trees [Saito2011]

Analysis operator

Analysis operator

Analysis operator

Analysis operator

$$\underbrace{\begin{pmatrix} y_0 \\ y_1 \end{pmatrix}}_{y} = \underbrace{\begin{pmatrix} \mathbf{H_m} \\ \mathbf{I} - \mathbf{GH_m} \end{pmatrix}}_{\mathbf{T_a}} x,$$

Simple (traditional) left inverse

$$\hat{x} = \underbrace{\left(\begin{array}{c} \mathbf{G} & \mathbf{I} \end{array}\right)}_{\mathbf{T_s}} \underbrace{\left(\begin{array}{c} y_0 \\ y_1 \end{array}\right)}_{y}$$

 $\mathbf{T_sT_a} = \mathbf{I} \qquad \qquad \text{with no conditions on } \mathbf{H} \text{ or } \mathbf{G}$

Pseudo Inverse ?

$$\mathbf{T}_{\mathbf{a}}^{\dagger} = \left(\mathbf{T}_{\mathbf{a}}^{T}\mathbf{T}_{\mathbf{a}}\right)^{-1}\mathbf{T}_{\mathbf{a}}^{T}$$

Let's try to use only filters

Define iteratively, through descent on LS:

$$\arg\min_{x} \|\mathbf{T}_{\mathbf{a}}x - y\|_{2}^{2} \longrightarrow \hat{x}_{k+1} = \hat{x}_{k} + \tau \mathbf{T}_{\mathbf{a}}^{T}(y - \mathbf{T}_{\mathbf{a}}\hat{x}_{k})$$

$$\mathbf{T}_{\mathbf{a}}^{T} = (\mathbf{H}_{\mathbf{m}}^{T} \quad \mathbf{I} - \mathbf{H}_{\mathbf{m}}^{T}\mathbf{G}^{T}) \xrightarrow{h - \mathbf{M}_{\mathbf{a}} = \mathbf{M}_{\mathbf{a}}} \overset{h}{\longrightarrow} \overset{h}{$$

we can easily implement $\mathbf{T}_{\mathbf{a}}^T \mathbf{T}_{\mathbf{a}}$ with filters and masks:

With the real symmetric matrix $\mathbf{Q} = \mathbf{T}_{\mathbf{a}}^{T} \mathbf{T}_{\mathbf{a}}$ and $b = \mathbf{T}_{\mathbf{a}}^{T} y$

N-1

 $x_N = \tau \sum_{j=0}^{N-1} (\mathbf{I} - \tau \mathbf{Q})^j b$ Use Chebyshev approximation of: $L(\omega) = \tau \sum_{j=0}^{N-1} (1 - \tau \omega)^j$

Kron Reduction

In order to iterate the construction, we need to construct a graph on the reduced vertex set.

$$\mathbf{A}_{\mathbf{r}} = \mathbf{A}[\alpha, \alpha] - \mathbf{A}[\alpha, \alpha) \mathbf{A}(\alpha, \alpha)^{-1} \mathbf{A}(\alpha, \alpha]$$
$$\mathbf{A} = \begin{bmatrix} \mathbf{A}[\alpha, \alpha] & \mathbf{A}[\alpha, \alpha] \\ \mathbf{A}(\alpha, \alpha] & \mathbf{A}(\alpha, \alpha) \end{bmatrix}$$

[[]Dorfler et al, 2011]

Kron Reduction

In order to iterate the construction, we need to construct a graph on the reduced vertex set.

$$\mathbf{A}_{\mathbf{r}} = \mathbf{A}[\alpha, \alpha] - \mathbf{A}[\alpha, \alpha) \mathbf{A}(\alpha, \alpha)^{-1} \mathbf{A}(\alpha, \alpha]$$
$$\mathbf{A} = \begin{bmatrix} \mathbf{A}[\alpha, \alpha] & \mathbf{A}[\alpha, \alpha) \\ \mathbf{A}(\alpha, \alpha] & \mathbf{A}(\alpha, \alpha) \end{bmatrix}$$

Properties:maps a weighted undirected laplacian to a weighted
undirected laplacianspectral interlacing (spectrum does not degenerate) $\lambda_k(\mathbf{A}) \leq \lambda_k(\mathbf{A}_r) \leq \lambda_{k+n-|\alpha|}(\mathbf{A})$

disconnected vertices linked in reduced graph IFF there is a path that runs only through eliminated nodes

Example

Note: For a k-regular bipartite graph

$$\mathbf{L} = \begin{bmatrix} k\mathbf{I}_n & -\mathbf{A} \\ -\mathbf{A}^T & k\mathbf{I}_n \end{bmatrix}$$

Kron-reduced Laplacian: $\mathbf{L}_r = k^2 \mathbf{I}_n - \mathbf{A} \mathbf{A}^T$

$$\hat{f}_r(i) = \hat{f}(i) + \hat{f}(N-i) \quad i = 1, ..., N/2$$

Filter Banks

2 critically sampled channels

Theorem: For a k-RBG, the filter bank is perfect-reconstruction IFF $|H(i)|^2 + |G(i)|^2 = 2$ H(i)G(N-i) + H(N-i)G(i) = 0

Conclusions

- Structured, data dependent dictionary of wavelets
 - sparsity and smoothness on graph are merged in simple and elegant fashion
 - fast algo, clean problem formulation
 - graph structure can be totally hidden in wavelets
- Filter banks based on nodal domains or coloring
 - Universal algo based on filtering and Kron reduction
 - Efficient IFF some structure in the graph
 - Unfortunately no closed form theory in general

