Wavelets and Filter Banks on Graphs

Pierre Vandergheynst Signal Processing Lab, EPFL

Joint work with David Shuman

BASP Frontiers Workshop
Villars, September 2011

Processing Signals on Graphs

Social Network

"Neuronal" Network

BASP Frontiers Workshop
Villars September 2011

Short outline

- Summary of one wavelet construction on graphs
- multiscale, filtering, sparsity, implementation
- Pyramidal algorithms
- polyphase components and downsampling
- the Laplacian Pyramid
- 2-channels, critically sampled filter banks?

Spectral Graph Wavelets

Remember good old Euclidean case:

$$
\begin{gathered}
\left(T^{s} f\right)(x)=\frac{1}{2 \pi} \int e^{i \omega x} \hat{\psi}^{*}(s \omega) \hat{f}(\omega) d \omega \\
\left(T^{s} \delta_{a}\right)(x)=\frac{1}{s} \psi^{*}\left(\frac{x-a}{s}\right)
\end{gathered}
$$

Villars September 2011

Spectral Graph Wavelets

$G=(E, V)$ a weighted undirected graph, with Laplacian $\mathcal{L}=D-A$
Dilation operates through operator: $T_{g}^{t}=g(t \mathcal{L})$
Translation (localization):
Define $\quad \psi_{t, j}=T_{g}^{t} \delta_{j}$ response to a delta at vertex j

$$
\begin{array}{r}
\psi_{t, j}(i)=\sum_{\ell=0}^{N-1} g\left(t \lambda_{\ell}\right) \phi_{\ell}^{*}(j) \phi_{\ell}(i) \quad \mathcal{L} \phi_{\ell}(j)=\lambda_{\ell} \phi_{\ell}(j) \\
\psi_{t, a}(u)=\int_{\mathbb{R}} d \omega \hat{\psi}(t \omega) e^{-j \omega a} e^{j \omega u}
\end{array}
$$

And so formally define the graph wavelet coefficients of f:

$$
W_{f}(t, j)=\left\langle\psi_{t, j}, f\right\rangle \quad W_{f}(t, j)=T_{g}^{t} f(j)=\sum_{\ell=0}^{N-1} g\left(t \lambda_{\ell}\right) \hat{f}(\ell) \phi_{\ell}(j)
$$

Frames

$\exists A, B>O, \exists h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$(i.e. scaling function)
$0<A \leqslant h^{2}(u)+\sum_{s} g\left(t_{s} u\right)^{2} \leqslant B<\infty$

$$
\phi_{n}=T_{h} \delta_{n}=h(\mathcal{L}) \delta_{n}
$$

A simple way to get a tight frame:

$$
\gamma\left(\lambda_{\ell}\right)=\int_{1 / 2}^{1} \frac{d t}{t} g^{2}\left(t \lambda_{\ell}\right) \curvearrowright \sim \sum_{\substack{\text { for any admissible kernel } g}} \tilde{g}\left(\lambda_{\ell}\right)=\sqrt{\gamma\left(\lambda_{\ell}\right)-\gamma\left(2 \lambda_{\ell}\right)}
$$

BASP Frontiers Workshop
Villars September 2011

Scaling \& Localization

Effect of operator dilation?

Theorem: $d_{G}(i, j)>K$ and g has K vanishing derivatives at 0

$$
\frac{\psi_{t, j}(i)}{\left\|\psi_{t, j}\right\|} \leq D t \text { for any } \mathrm{t} \text { smaller than a critical scale }
$$

Reason ? At small scale, wavelet operator behaves like power of Laplacian

Scaling \& Localization

Example

바우웅

BASP Frontiers Workshop
Villars September 2011

Non-local Wavelet Frame

- Non-local Wavelets are ...

... Graph Wavelets on Non-Local Graph

increasing scale
Interest: good adaptive sparsity basis

BASP Frontiers Workshop
Villars September 2011

Sparsity and Smoothness on Graphs

scaling functions coeffs

BASP Frontiers Workshop
Villars September 2011

Remark on Implementation

Not necessary to compute spectral decomposition for filtering
Polynomial approximation : $\quad g(t \omega) \simeq \sum_{k=0}^{K-1} a_{k}(t) p_{k}(\omega)$

Then wavelet operator expressed with powers of Laplacian:

$$
T_{g}^{t} \simeq \sum_{k=0}^{K-1} a_{k}(t) \mathcal{L}^{k}
$$

And use sparsity of Laplacian in an iterative way

Remark on Implementation

$$
\tilde{W}_{f}(t, j)=\left(p(\mathcal{L}) f^{\#}\right)_{j} \quad\left|W_{f}(t, j)-\tilde{W}_{f}(t, j)\right| \leq B\|f\|
$$

sup norm control (minimax or Chebyshef),

$$
\begin{aligned}
& \tilde{W}_{f}\left(t_{n}, j\right)=\left(\frac{1}{2} c_{n, 0} f^{\#}+\sum_{k=1}^{M_{n}} c_{n, k} \bar{T}_{k}(\mathcal{L}) f^{\#}\right)_{j} \\
& \bar{T}_{k}(\mathcal{L}) f=\frac{2}{a_{1}}\left(\mathcal{L}-a_{2} I\right)\left(\bar{T}_{k-1}(\mathcal{L}) f\right)-\bar{T}_{k-2}(\mathcal{L}) f
\end{aligned}
$$

Computational cost dominated by matrix-vector multiply with (sparse) Laplaciany matrix.
In particular $O\left(\sum_{n=1} M_{n}|E|\right)$
Note: "same" algorithm for adjoint!

Distributed Computation

Scenario: Network of N nodes, each knows

- local data f(n)
- local neighbors
- M Chebyshev coefficients of wavelet kernel
- A global upper bound on largest eigenvalue of graph laplacian

To compute: $(\tilde{\boldsymbol{\Phi}} f)_{(j-1) N+n}=\left(\frac{1}{2} c_{j, 0} f+\sum_{k=1}^{M} c_{j, k} \bar{T}_{k}(\mathcal{L}) f\right)_{n}$

$$
\left(\bar{T}_{1}(\mathcal{L}) f\right)_{n}=\left(\frac{2}{\alpha}(\mathcal{L}-\alpha I) f\right)_{n} \quad \text { sensor only needs } \mathrm{f}(\mathrm{n}) \text { from its neighbors }
$$

$\left(\bar{T}_{k}(\mathcal{L}) f\right)=\frac{2}{\alpha}(\mathcal{L}-\alpha I)\left(\bar{T}_{k-1}(\mathcal{L}) f\right)-\bar{T}_{k-2}(\mathcal{L}) f \quad$ Computed by exchanging last computed values

Distributed Computation

Communication cost: $2 \mathrm{M}|\mathrm{E}|$ messages of length 1 per node
Example: distributed denoising, or distributed regression, with Lasso

$$
\begin{aligned}
& \arg \min _{a} \frac{1}{2}\left\|y-\boldsymbol{\Phi}^{*} a\right\|_{2}^{2}+\|a\|_{1, \mu} \\
& a_{i}^{(k)}=\mathcal{S}_{\mu_{i}, \tau}\left(\left[a^{k-1}+\tau \boldsymbol{\Phi}\left(y-\boldsymbol{\Phi}^{*} a^{k-1}\right)\right]_{i}\right) \\
& \mathcal{S}_{\mu_{i} \tau}(z):= \begin{cases}0 & \text { if }|z| \leq \mu_{i} \tau \\
z-\operatorname{sgn}(z) \mu_{i} \tau & , \text { o.w. }\end{cases}
\end{aligned}
$$

Total communication cost:
Distributed Lasso [Mateos, Bazerque, Gianakis] Cost $\sim|E| N$
Chebyshev $\quad \boldsymbol{\Phi} y \quad 2 \mathrm{M}|\mathrm{E}|$ messages of length 1

$$
\text { Cost } \sim|E|
$$

$\boldsymbol{\Phi} \boldsymbol{\Phi}^{*} a \quad 4 \mathrm{M}|\mathrm{E}|$ messages of length $\mathrm{J}+1$

Graph wavelets

- Redundancy breaks sparsity
- can we remove some or all of it?
- Faster algorithms
- traditional wavelets have fast filter banks implementation
- whatever scale, you use the same filters
- here: large scales -> more computations
- Goal: solve both problems at one

Basic Ingredients

Euclidean multiresolution is based on two main operations

Filtering (typically low-pass and high-pass)
Down and Up sampling

Filtering is fine but how do we downsample on graphs ???

BASP Frontiers Workshop
Villars September 2011

Basic Ingredients

Subsampling is equivallent to splitting in two cosets (even, odd)
$\square \longrightarrow \square$

Questions: How do we partition a graph into meaningful cosets ?
Are there efficient algorithms for these partitions ?
Are there theoretical guarantees ?
How do we define a new graph from the cosets ?

Cosets - A spectral view

Subsampling is equivallent to splitting in two cosets (even, odd)
$\longrightarrow \longrightarrow \longrightarrow$

Classically, selecting a coset can be interpreted easily in Fourier:

$$
\begin{array}{r}
f_{\text {sub }}(i)=\frac{1}{2} f(i)(1+\cos (\pi i)) \\
\text { eigenvector of } \\
\text { largest eigenvalue }
\end{array}
$$

Cosets and Nodal Domains

Nodal domain: maximally connected subgraph s.t. all vertices have same sign w.r.t a reference function

We would like to find a very large number of nodal domains, ideally $|V|$!
Nodal domains of Laplacian eigenvectors are special (and well studied)

Theorem: the number of nodal domains associated to the largest laplacian eigenvector of a connected graph is maximal,

$$
\nu\left(\phi_{\max }\right)=\nu(G)=|V|
$$

IFF G is bipartite

In general: $\nu(G)=|V|-\chi(G)+2$ (extreme cases: bipartite and complete graphs)

Cosets and Nodal Domains

Nodal domain: maximally connected subgraph s.t. all vertices have same sign w.r.t a reference function

We would like to find a very large number of nodal domains, ideally $|V|$!
Nodal domains of Laplacian eigenvectors are special (and well studied)

For any connected graph we will thus naturally define cosets and their associated selection functions

$$
\begin{array}{ll}
V_{+}=\left\{i \in V \text { s.t. } \phi_{N-1}(i) \geq 0\right\} & V_{-}=\left\{i \in V \text { s.t. } \phi_{N-1}(i)<0\right\} \\
M_{+}(i)=\frac{1}{2}\left(1+\operatorname{sgn}\left(\phi_{N-1}(i)\right)\right) & M_{-}(i)=\frac{1}{2}\left(1-\operatorname{sgn}\left(\phi_{N-1}(i)\right)\right)
\end{array}
$$

Examples of cosets

Simple line graph 00000000 ○○○○○○○○

$$
\phi_{k}(u)=\sin (\pi k u / n+\pi / 2 n) \quad \lambda_{k}=2-2 \cos (\pi k / n) \quad 1 \leq k \leq n
$$

Villars September 2011

Examples of cosets

Simple line graph 0००००००००००००○○○

Simple ring graph

$$
\begin{gathered}
\phi_{k}^{1}(u)=\sin (2 \pi k u / n) \quad \phi_{k}^{2}(u)=\cos (2 \pi k u / n) \quad 1 \leq k \leq n / 2 \\
\lambda_{k}=2-2 \cos (2 \pi k / n)
\end{gathered}
$$

Examples of cosets

Simple line graph ・ー०००००० - ○○○○○○

Simple ring graph

Lattice

quincunx

The Agonizing Limits of Intuition

- Multiplicity of $\lambda_{\max }$
- how do we choose the control vector in that subspace?
- even a prescription can be numerically ill-defined
- graphs with "flat" spectrum in close to their spectral radius
- Laplacian eigenvectors do not always behave like global oscillations
- seems to be true for random perturbations of simple graphs
- true even for a class of trees [Saito2011]

The Laplacian Pyramid

Analysis operator

BASP Frontiers Workshop
Villars September 2011

The Laplacian Pyramid

Analysis operator

BASP Frontiers Workshop
Villars September 2011

The Laplacian Pyramid

Analysis operator

$$
\begin{aligned}
y_{0} & =\mathbf{H}_{\mathbf{n}} x_{y_{0}} \\
& =\underbrace{\mathbf{M} \mathbf{H}_{1} x_{1}}_{y})
\end{aligned}=\underbrace{\left(\begin{array}{ll}
y_{1} \mathbf{H}_{\mathbf{\mathbf { m }}} & x \\
\mathbf{I}-\mathbf{G}_{\mathbf{n}} \mathbf{H}_{\mathbf{n}}
\end{array}\right)}_{\mathbf{T}_{\mathbf{a}}} \mathbf{x} \mathbf{G} y_{0} \mathbf{G}_{\mathbf{m}} x
$$

BASP Frontiers Workshop
Villars September 2011

The Laplacian Pyramid

Analysis operator

$$
\underbrace{\binom{y_{0}}{y_{1}}}_{y}=\underbrace{\binom{\mathbf{H}_{\mathbf{m}}}{\mathbf{I}-\mathbf{G H}_{\mathbf{m}}}}_{\mathbf{T}_{\mathbf{a}}} x
$$

Simple (traditional) left inverse

$$
\hat{x}=\underbrace{\left(\begin{array}{ll}
\mathbf{G} & \mathbf{I}
\end{array}\right)}_{\mathbf{T}_{\mathbf{s}}} \underbrace{\binom{y_{0}}{y_{1}}}_{y}
$$

$$
\mathbf{T}_{\mathbf{s}} \mathbf{T}_{\mathbf{a}}=\mathbf{I} \quad \text { with no conditions on } \mathbf{H} \text { or } \mathbf{G}
$$

BASP Frontiers Workshop
Villars September 2011

The Laplacian Pyramid

Pseudo Inverse ?

$$
\mathbf{T}_{\mathbf{a}}{ }^{\dagger}=\left(\mathbf{T}_{\mathbf{a}}^{T} \mathbf{T}_{\mathbf{a}}\right)^{-1} \mathbf{T}_{\mathbf{a}}^{T}
$$

Let's try to use only filters

Define iteratively, through descent on LS:

$$
\arg \min _{x}\left\|\mathbf{T}_{\mathbf{a}} x-y\right\|_{2}^{2} \longrightarrow \hat{x}_{k+1}=\hat{x}_{k}+\tau \mathbf{T}_{\mathbf{a}}^{T}\left(y-\mathbf{T}_{\mathbf{a}} \hat{x}_{k}\right)
$$

$$
\mathbf{T}_{\mathbf{a}}^{T}=\left(\mathbf{H}_{\mathbf{m}}^{T} \quad \mathbf{I}-\mathbf{H}_{\mathbf{m}}^{T} \mathbf{G}^{T}\right)
$$

BASP Frontiers Workshop
Villars September 2011

The Laplacian Pyramid

we can easily implement $\mathbf{T}_{\mathbf{a}}{ }^{T} \mathbf{T}_{\mathbf{a}}$ with filters and masks:

With the real symmetric matrix $\mathbf{Q}=\mathbf{T}_{\mathbf{a}}{ }^{T} \mathbf{T}_{\mathbf{a}}$ and $b=\mathbf{T}_{\mathbf{a}}{ }^{T} y$

$$
x_{N}=\tau \sum_{j=0}^{N-1}(\mathbf{I}-\tau \mathbf{Q})^{j} b
$$

Use Chebyshev approximation of: $\quad L(\omega)=\tau \sum(1-\tau \omega)^{j}$
BASP Frontiers Workshop
Villars September 2011

Kron Reduction

In order to iterate the construction, we need to construct a graph on the reduced vertex set.

$$
\begin{gathered}
\mathbf{A}_{\mathrm{r}}=\mathbf{A}[\alpha, \alpha]-\mathbf{A}[\alpha, \alpha) \mathbf{A}(\alpha, \alpha)^{-1} \mathbf{A}(\alpha, \alpha] \\
\mathbf{A}=\left[\begin{array}{cc}
\mathbf{A}[\alpha, \alpha] & \mathbf{A}[\alpha, \alpha) \\
\mathbf{A}(\alpha, \alpha] & \mathbf{A}(\alpha, \alpha)
\end{array}\right]
\end{gathered}
$$

Kron reduction

[Dorfler et al, 2011]

Kron Reduction

In order to iterate the construction, we need to construct a graph on the reduced vertex set.

$$
\begin{gathered}
\mathbf{A}_{\mathrm{r}}=\mathbf{A}[\alpha, \alpha]-\mathbf{A}[\alpha, \alpha) \mathbf{A}(\alpha, \alpha)^{-1} \mathbf{A}(\alpha, \alpha] \\
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{A}[\alpha, \alpha] & \mathbf{A}[\alpha, \alpha) \\
\mathbf{A}(\alpha, \alpha] & \mathbf{A}(\alpha, \alpha)
\end{array}\right]
\end{gathered}
$$

Properties: maps a weighted undirected laplacian to a weighted undirected laplacian
spectral interlacing (spectrum does not degenerate)

$$
\lambda_{k}(\mathbf{A}) \leq \lambda_{k}\left(\mathbf{A}_{r}\right) \leq \lambda_{k+n-|\alpha|}(\mathbf{A})
$$

disconnected vertices linked in reduced graph IFF there is a path that runs only through eliminated nodes

Example

Note: For a k-regular bipartite graph

$$
\mathbf{L}=\left[\begin{array}{cc}
k \mathbf{I}_{n} & -\mathbf{A} \\
-\mathbf{A}^{T} & k \mathbf{I}_{n}
\end{array}\right]
$$

Kron-reduced Laplacian: $\quad \mathbf{L}_{r}=k^{2} \mathbf{I}_{n}-\mathbf{A} \mathbf{A}^{T}$

$$
\hat{f}_{r}(i)=\hat{f}(i)+\hat{f}(N-i) \quad i=1, \ldots, N / 2
$$

BASP Frontiers Workshop
Villars September 2011 FÉDÉRALE DE LAUSANNE

Filter Banks

2 critically sampled channels

Theorem: For a k-RBG, the filter bank is perfect-reconstruction IFF

$$
\begin{gathered}
|H(i)|^{2}+|G(i)|^{2}=2 \\
H(i) G(N-i)+H(N-i) G(i)=0
\end{gathered}
$$

Conclusions

- Structured, data dependent dictionary of wavelets
- sparsity and smoothness on graph are merged in simple and elegant fashion
- fast algo, clean problem formulation
- graph structure can be totally hidden in wavelets
- Filter banks based on nodal domains or coloring
- Universal algo based on filtering and Kron reduction
- Efficient IFF some structure in the graph
- Unfortunately no closed form theory in general

