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Array imaging – target detection

Basic problem: Find exact location and velocity of targets by
analyzing received (reflected) electromagnetic waves.



Radar imaging – challenges

Problem comes in many different flavors:
active/passive targets
clutter/no clutter
extended targets/point targets (near-field/far-field)
stationary/moving targets

Difficulty: Essentially any somewhat realistic setup leads to an
underdetermined (linear or nonlinear) system of equations.
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Limitations of existing radar imaging methods

Methods work well for a “few” targets, but break down if
number of targets is “large”
Limited accuracy and resolution (spatial, delay/Doppler)
Clutter affects target detection
Huge computational complexity of more sophisticated
(parameter-estimation based) methods
Theory not well matched to practice (typical assumptions:
only one target, number of antennas goes to infinity,...)
Methods cannot detect “weak” targets (enormous
dynamical range across reflection strength of targets)
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Target scene Thresholded matched field



Sparsity in array imaging

Conceptual mistake: Existing methods exploit sparsity as as
afterthought, an ad-hoc fix, instead of utilizing it in a
mathematically rigorous way from the beginning on.

What is sparse here?
Targets occupy very small area compared to entire domain in
which we search for targets (this assumes absence of clutter,
otherwise additional linear transform of radar scene may be
required). E.g., airborne radar, detection of submarines, ...

Better approach: Utilize ideas from compressive sensing to
exploit sparsity in a rigorous and more systematic way.
Note: We do not want to undersample on purpose, i.e., we
don’t want to do compressive sensing.
We want to use insight from compressive sensing to better deal
with ill-posed inverse problem.
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Inverse Scattering Problem – Paraxial Regime

Assumption: α + L� z0



Helmholtz equation, Green’s function, ...

The exact Green’s function for Helmholtz’s equation which
governs wave propagation is

G(a, r) =
eiω‖r−a‖2

4π‖r − a‖2
, a = (0, ξ, η), r = (z0, x , y)

a: point in the sensor domain, r : point in the target domain.
Set phase speed c = 1, thus frequency ω = wavenumber.

We assume that distance z0 between targets and sensors
satisfies z0 � α + L, z0 � λ (Fresnel diffraction regime)
In this case we can use the paraxial Green’s function

G(a, r) =
eiωz0

4πz0
eiω|x−ξ|2/(2z0)eiω|y−η|2/(2z0)
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Inverse scattering - Born approximation

Inverse scattering obeys the Lippmann-Schwinger equation
and is thus intrinsically nonlinear due to multiple scattering.
We use the standard Born approximation: Instead of

G̃(r ,ai) = G(r ,ai) +
s∑

l=1

σjl G(r , rjl )G̃(rjl ,ai)

we consider

G̃(r ,ai) = G(r ,ai) +
s∑

l=1

σjl G(r , rjl )G(rjl ,ai)

where G̃(r ,ai) is the exciting field.
We obtain a linearized model (“single-bounce model”).
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Inverse Scattering Problem – Paraxial Regime

Assumption: α + L� z0



We discretize target domain [0,L]× [0,L] by a rectangular grid
with mesh-size ` and denote number of grid points by m.

Let σk be the amplitude of the k -th target and let the vector
x ∈ Cm be defined as

xk =

{
σk if k -th grid point is location of a target
0 else.



Born approximation, Green’s function

Due to the Born approximation we have linearized the relation
between scatterers and scattered field.
The measurement vector y can be written as Ax = y with
y ∈ Cn2

, where n is the number of antennas.

The corresponding n2 ×m sensing matrix A is given by

Alj = G(ai , rj)G(rj ,ak ), l = i(n − 1) + k ,

where G(a, r) is the paraxial Green’s function

G(a, r) =
eiωz0

4πz0
eiω|x−ξ|2/(2z0)eiω|y−η|2/(2z0)

Note: Unless we use crude discretization we have n2 � m.
Hence the system is underdetermined!
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Sparse Recovery/Compressive Sensing

Consider the system Ax = y , where A is a k ×m matrix with
full row-rank and k ≤ m: System is underdetermined!
⇒ Infinitely many solutions, which one is the right one?

Assume that x ∈ Cm satisfies ‖x‖0 := | supp x | � m.
If s := ‖x‖0 ≤ k/2, then in theory we can recover x by solving

min ‖x‖0 s.t. Ax = y (L0)

Instead of trying to solve this NP-hard problem we consider its
convex relaxation (known as Basis Pursuit)

min ‖x‖1 s.t. Ax = y (L1)

If x is sparse then the solution of (L1) is identical to the solution
of (L0) under certain conditions on A: RIP, incoherence, ...
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Conditions on matrix A for (L0)-(L1) equivalence

Coherence of A: [Donoho-Huo, Tropp, ...]

µ(A) = max
k 6=`

|〈Ak ,A`〉|
‖Ak‖2‖A`‖2

, where Ai is i-th column of A.

Restricted Isometry Property: [Candes-Tao] Any submatrix
formed by r arbitrary columns of A is almost an isometry.

Examples for good matrices: Gaussian matrices, partial
random Fourier matrices, equiangular tight frames, ...

Typical result for those matrices: if s < O(k/ ln m), then with
high probability BP gives the sparsest solution.
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Compressive sensing matrices in practice

Known good CS matrices: ... are either random matrices
(Gaussian matrices, Bernoulli matrices, partial random Fourier
matrices) or deterministic matrices (equiangular tight frames,
mutually unbiased bases, ...).
Well developed theory for these cases.

Challenge: In many applications we cannot simply choose the
matrix A as we please. Structure of A is governed (at least in
part) by underlying physical process, such as the properties of
wave propagation.

Is our A a good compressive sensing matrix?

What is under our control? Number of antennas, antenna
locations, mesh size for discretization
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Discretization, Regularization, Coherence

Questions of discretization are usually ignored in compressive
sensing, but play a key role in many real world applications.

Two contradicting desires:
Want as high resolution as possible: choose very small
meshsize `.
Want matrix to have small coherence or to satisfy RIP with
good bounds: choose large meshsize `.

Making meshsize small increases coherence and increases
underdeterminedness of Ax = y .
Thus finding optimal discretization is crucial to make sparse
recovery possible!
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Compressive array imaging - theory

Theorem: [A.Fannjiang, M.Yan, T.S. ’09].
Assume that the n sensors are randomly distributed and that

`α

λz0
≥ 1 (1)

Let s ≤ O(n2/(ln m)2). Then with high probability s randomly
distributed targets can be located exactly by Basis Pursuit.

The relation (1) indicates the existence of a threshold, an
optimal aperture size α = λz0/`, or equivalently, an optimal
mesh size ` for the discretization of the target domain

` ≥ λz0

α



Proof-sketch: Based on coherence of matrix A and a theorem
by J. Tropp. We need to show that

A has full rank
derive a good bound for ‖A‖2
obtain an estimate for the coherence µ of A.

Coherence estimate for A: (see also Rauhut and Kunis, 2008)
Assume `α

λz0
≥ 1 and m ≤ δeK 2/2 for some δ,K > 0. Then

µ(A) ≤ 2K 2/n

with probability greater than (1− δ)2.
Remarks:

Coherence estimate is optimal w.r.t. n.
µ(A) is roughly constant for α ≥ λz0/`

Threshold for mesh-size ` = z0λ/α. Choose ` too small,
and BP will fail.



Resolution then and now ...

The resolution limit
` ≥ z0λ/α

is the classical Rayleigh limit
Does Sparse Remote Sensing have the same resolution limit
as standard methods?
What have we gained, if anything?

A resolution limit does not mean that this resolution is actually
achievable!
With compressive sensing approach we obtain guaranteed
recovery (with high probability) of a substantial number of
targets with comparably small number of antennas.
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Inverse scattering, numerical example

20 antennas, α = 100, z0 = 10000, λ = 0.1, this implies ` = 10
as optimal mesh size for discretization of target domain.
35 randomly distributed targets. Matrix A is of size 400× 2500.
We use exact Green’s function for computing actual wave
propagation (i.e., for computing y), but Born approximation and
paraxial approximation for setting up the matrix A.
That means we have twofold model mismatch:

We use Born approximation, but actual system of
equations is nonlinear
We use paraxial approximation, i.e., we have a linear
perturbation of matrix A

[M.Herman, T.S., ’08] BP is robust in presence of linear matrix
perturbation if matrix satisfies RIP (extends result by Candes).



Inverse Scattering - numerical example

Target scene Matched field solution



Inverse Scattering - numerical example

Target scene Matched field solution



Inverse Scattering - numerical example

Target scene Thresholded matched field



Inverse Scattering - numerical example

Target scene Thresholded matched field



Inverse Scattering - numerical example

Target scene Basis Pursuit



MIMO Radar - Signal model

NT transmit antennas, NR receive antennas
Co-located antennas (monostatic setup)
Coherent propagation scenario
k -th antenna sends signal sk of bandwidth B and period T



Assume we take Ns samples of the received radar signal.
Let Z (t ; θ, r) denote the received NR × Ns signal matrix from a
unit-strength target at direction θ and range r . Then

Z (t ; θ, r) = aR(θ)aT
T (θ)S(t − τ),

where S is an NT × N matrix whose rows contain the circularly
delayed signals sk (t − τ), t = 1, . . . ,N; and τ = 2r/c with c
denoting the speed of light.
aT (θ) and aR(θ) are the transmit- and receive array manifolds,
which for uniformly spaced linear arrays can be written as

aR(θ) =


1

ej2πdR sin θ

...
ej2πdR(NR−1) sin θ

 , aT (θ) =


1

ej2πdT sin θ

...
ej2πdT (NT−1) sin θ


where dR and dT are the normalized spacings (distance divided
by wavelength) between antenna elements.



From signal model to linear system of equations

We discretize range/azimuth domain with step-sizes ∆r ,∆θ and
obtain a range/azimuth grid (θi , rj), 1 ≤ i ≤ Nθ,1 ≤ j ≤ Nr .
Here, Nr ,Nθ denote the number of grid points in each axis.



From signal model to linear system of equations

We construct the response matrix A, whose columns are
the vectors z(t ; θi , rj) := vec{Z (t ; θi , rj)}. Each z has length
NRN, hence A is an NRNs × NθNr matrix.
Assume the radar scene consists of s scatterers located
on s points of the (θi , rj)-grid. Let x be the NθNr × 1 vector,
whose non-zero elements are the amplitudes of the
scatterers. That means x has s non-zero elements (but we
do not know their location!).
The received radar signal y is now given by

y = Ax + v ,

where v is Gaussian noise with variance σ.
Note: Unless we use crude discretization we have
NRNs < NθNr . Hence the system is underdetermined



Non-stationary radar scene – Doppler effect

In presence of Doppler shift fd , we need to replace Z (t ; θ, r) by

Z (t ; θ, r , fd ) = aR(θ)aT
T (θ)S(t − τ, fd ),

where the entries of S are the circularly delayed and Doppler
shifted signals sk (t − τ)ej2πfd t .
Discretizing the “Doppler domain” with Nf grid points and
setting up the response matrix A analogously to before, we
obtain the system of equations

y = Ax + v ,

where A is now an NRNs × NθNr Nf matrix.
Thus the system is even more underdetermined than before.



Setup

Waveforms: sk is a periodic, continuous-time white-noise signal
of duration T seconds, filtered by an ideal lowpass filter with
cutoff frequency B Hertz.
Antennas: Let dT = NR

2 ,dR = 1
2 (or dT = 1

2dR = NT
2 ).

Discretization:
Azimuth is discretized as β = n∆β where ∆β = 2

NRNT
,

n = −NRNT
2 , . . . , NRNT−1

2 and β = sin θ.
Range is discretized as τ = m∆τ where ∆τ = 1

2B ,
m = 0, . . . ,Ns − 1.
Generic sparse scatterer model: Location of the S scatterers is
selected uniformly at random, amplitudes of scatterers have
random phases

LASSO: min
x

1
2
‖Ax−y‖22 +λ‖x‖1.



Theorem (no Doppler): [B.Friedlander, T.S, ’11].
Assume that x is drawn from the generic S-sparse scatterer
model with

S ≤ c0Nr NR

4 log(Nr NRNT )
(1)

for some constant c0 > 0. Furthermore, suppose that

log3(Nr NRNT ) ≤ Ns. (2)

If
min

k
|xk | > (1 + ε)σ

√
2 log Nr NRNT , (3)

then with high probability the Lasso estimate computed with
λ = 2

√
2 log(Nr NRNT ) obeys

supp(x̂) = supp(x), and
‖x̂− x‖2
‖x‖2

≤ 3σ
√

Nr NRNT

‖y‖2







Proof-sketch:

Proof is based on careful analysis of structure of A and a
theorem by Candes-Plan
Key steps:

Need bound on ‖A‖op.
Need bound on coherence µ(A).

Difficulty: A is a both a random and a deterministic matrix.
Key tools:

Under the right conditions AA∗ is a block-Toeplitz matrix
with circulant blocks (but A is not!)
Incoherence of S comes into play
Use bounds for quadratic forms (a’la Wright-Hanson)
Concentration of measure
Exploit specific choice for transmit/receive antenna spacing



Optimality of estimates

Bounds on norm and coherence are optimal (up to small
constants and probability)

Coherence: µ(A) ≤ 2
√

1
Ns

log(Nr NRNT ). Why does µ(A)

only scale with Ns and not with the number of rows, NRNs?
Comes from “decoupling”: Aτ,β = aR ⊗ (SτaT )

Randomness on target locations can likely be removed
(a’la Rauhut ...)



MIMO radar - simulations

5 targets, target strengths range from 0.1 to 10
“Reconstruction” via matched filter (spectrogram) misses
targets
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MIMO radar - simulations

Reconstruction via Lasso: Noise level is such that noise
condition of theorem is satisfied by all targets



MIMO radar - simulations

Reconstruction via Lasso: Noise level is such that noise
condition of theorem is satisfied by four strongest targets



Clutter - separating wheat from chaff

In many imaging scenarios the
object of interest (target) is
surrounded by objects we don’t
care about (clutter).
Can we automatically separate
clutter from targets?
We need some model for clutter.
E.g. clutter is fairly stationary
compared to moving targets



Clutter and radar

Assuming some model for the clutter can we improve target
detection by automatically separating targets from clutter?
We measure y = Ax , where x contains targets as well as
clutter. Clutter has the effect that x is no longer sparse,
thus standard sparse recovery techniques will fail!
Want framework that can deal with rather vague prior
information about clutter.



Adapt Robust PCA ideas to clutter separation



Compressive Completion

Assume we have a sequence of observations
y1, y2, . . . , yn, where yk = Axk . Write xk as k -th column of
the matrix X and let y := [y1; . . . yn]. Then AX = y .
In radar this system will be highly underdetermined, but X
will not be sparse in presence of clutter!
Example: STAP radar.
Assume that X = L + S, where the matrix L represents the
static background (clutter) and S encodes the innovation
(moving targets). L will be a low-rank matrix and S a
sparse matrix.

To recover S from y we propose to solve

min ‖L‖∗ + λ‖S‖1 s.t. ‖A(L + S)− y‖2 ≤ ε

Nuclear norm ‖ · ‖∗ serves as proxy for minimizing rank of L
1-norm ‖ · ‖1 serves as proxy for sparsity of S.
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Compressive Completion

Approach combines tools from compressive sensing with
tools from matrix completion→ Compressive Completion
Approach inspired by work of Chandrasekaran et al. and
Candes et al..
Key difference: They observe entire matrix X , but we
observe only small number of linear measurements of X ,
which makes it way more challenging.
We cannot first recover X from y and then separate X into
L and S, since AX = y is underdetermined and X is not
sparse!
Initial theoretical results: Can prove that under certain
conditions compressive completion gives exact result.



Initial numerical simulations

Stylized STAP example:

Standard compressive sensing recovery methods would fail
miserably, only carefully exploiting a priori information about
clutter makes success possible!
Would need a very large number of antennas to achieve similar
results with standard techniques!
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Parametric vs Nonparametric World
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Caught between two worlds

Parametric world: Non-Parametric world:
Maximum Likelihood Spectrogram + “Thresholding”

min f (y ; x1, . . . , xs) A∗y
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