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Motivation

Why Sampling Optimization?

MAP reconstruction, 1/4 Nyquist (64 encodes) L2 = 7.38
Low pass: Dense sampling of low frequencies
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Motivation

Why Sampling Optimization?

MAP reconstruction, 1/4 Nyquist (64 encodes) L2 = 8.12(±0.53)

Random (variable density) Lustig, Donoho, Pauli: MRM 58(6)
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Motivation

Why Sampling Optimization?

MAP reconstruction, 1/4 Nyquist (64 encodes) L2 = 5.66
Bayesian optimized Seeger et.al., MRM 63(1)
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Motivation

Why Sampling Optimization?

MAP reconstruction, 1/4 Nyquist (64 encodes) L2 = 46.48(±8.01)

Uniformly random Fourier coefficients
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Bayesian Inference and Experimental Design

Reconstruction is Ill Posed
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Bayesian Inference and Experimental Design

Image Statistics

Whatever images are . . .

they are not Gaussian!

Image gradient super-Gaussian (“sparse”)

Use sparsity prior distribution P(u)
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Bayesian Inference and Experimental Design

Posterior Distribution

Likelihood P(y |u): Data fit
Prior P(u): Signal properties
Posterior distribution P(u |y ):
Consistent information summary

P(y |u)
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Bayesian Inference and Experimental Design

Posterior Distribution

Likelihood P(y |u): Data fit
Prior P(u): Signal properties
Posterior distribution P(u |y ):
Consistent information summary

P(u |y ) =
P(y |u)× P(u)

P(y )
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Bayesian Inference and Experimental Design

Estimation and Bayesian Decision Making

Penalized Estimation

û = argmax P(y |u)P(u)

Single best guess û
Massive recent progress
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Bayesian Inference and Experimental Design

Estimation and Bayesian Decision Making

Penalized Estimation

û = argmax P(y |u)P(u)

Single best guess û
Massive recent progress

Bayesian Inference

P(u |y ) =
P(y |u)P(u)

P(y )

Quantify your uncertainty
Optimal decision making
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Bayesian Inference and Experimental Design

Bayesian Experimental Design

Posterior: Uncertainty in
reconstruction
Experimental design:
Find poorly determined
directions
Sequential search with
interjacent partial
measurements
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Bayesian Inference and Experimental Design

Main Message

Compressive sampling for anatomical MRI?
Needs design optimization.
Random sampling plus `1 magic suboptimal.
Design optimization:
Decision making (about X ) under uncertainty (about u).
Needs Bayesian inference beyond MAP estimation.
Bayesian inference? You must be kidding!

MCMC: Undirected random walks, not based on optimization
Many orders of magnitude slower than estimation (gap increasing)
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Bayesian Inference and Experimental Design

Main Message

Variational Bayesian inference:
Convex optimization
Driven by MAP (least squares) estimation
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Large Scale Variational Inference

Sparse Linear Image Model
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Large Scale Variational Inference

Variational Bayesian Inference

P(u |y ) =
P(y |u)× P(u)

P(y )

Variational Inference Approximation
Write intractable integration as (intractable) optimization
Relax to tractable optimization problem
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Large Scale Variational Inference

Variational Bayesian Inference

P(u |y ) =
P(y |u)× P(u)

P(y )

Variational Relaxation: Bound the master function

− log P(y ) = − log
∫

P(u ,y ) du︸ ︷︷ ︸
Moment generating function

≤ min
γ

min
u
φ(u ,γ)

Approximate posterior P(u |y ) by Gaussian
Integration⇒ Convex optimization
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Large Scale Variational Inference

Decoupling by Concavity

− log
∫

P(u ,y ) du ≤ min
γ

min
u
φ(u ,γ)

Dependencies in posterior P(u |y )
⇒ Difficult couplings in criterion φ
Critically coupled part is concave
Upper bound by tangent plane
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Large Scale Variational Inference

Decoupling by Concavity

− log
∫

P(u ,y ) du ≤ min
γ

min
u
φ(u ,γ) = min

z
min

γ
min

u
φz (u ,γ)︸ ︷︷ ︸

Decoupled problem

Dependencies in posterior P(u |y )
⇒ Difficult couplings in criterion φ
Critically coupled part is concave
Upper bound by tangent plane
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Large Scale Variational Inference

Double Loop Algorithm

min
u

(min
γ
φz (u ,γ))

Double loop algorithm

Inner loop optimization: minγ minu φz (u ,γ)

Outer loop update: minz φz (u ,γ)
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Large Scale Variational Inference

Double Loop Algorithm

min
u

(min
γ
φz (u ,γ)) = min

u
‖y − X u‖2 +Rz (u)

Double loop algorithm

Inner loop optimization: minγ minu φz (u ,γ)
Penalized Least Squares
Outer loop update: minz φz (u ,γ)
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Large Scale Variational Inference

Double Loop Algorithm

Tangent plane : z ← ∇γ−1φ∩(γ
−1) = diag(BA−1BT )

A = σ−2X T X + BT (diag γ)−1B

Double loop algorithm

Inner loop optimization: minγ minu φz (u ,γ)
Penalized Least Squares
Outer loop update: minz φz (u ,γ)
Gaussian (Co)Variances
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Large Scale Variational Inference

Standing on Shoulders

Penalized
Estimation

Gaussian Model
(Co)Variances

Approximate
Bayesian Inference

Bioucas-Dias, Figueiredo
Two-Step Iterative Shrinkage ...

IEEE Transactions ...

Wright, Novak, Figueiredo
Sparse Reconstruction by ...

IEEE Transactions ...

Malioutov, Johnson, Willsky
Low-Rank Variance Estimation

IEEE Transactions ...

Bekas, Kokiopoulou, Saad
Computation of Large ...

SIAM Journal on Matrix ...

Schneider, Willsky
Krylov Subspace Estimation

SIAM Journal on Scientific ...

Vonesch, Unser
A Fast Multilevel Algorithm ...

IEEE Transactions ...
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Experiments

Optimizing Cartesian MRI

Bayes Optim. VD Random Low Pass

Seeger et.al., MRM 63(1), 2010 Lustig, Donoho, Pauli, MRM 58(6), 2007 Common MRI practice
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Experiments

Experimental Results: Test Set Errors
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Outlook

Bayesian Technology for Imaging

MRI applications other than sampling optimization

Autocalibrating parallel MRI (plus k -space optimization)
by robust Bayesian blind deconvolution
Robust joint estimation / calibration:
B0 field map, relaxation, motion, . . .
Parallel transmit: Optimizing spokes design
Dynamic / 3D MRI:
Graphical models, belief propagation to factorize computations
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Outlook

Bayesian Technology for Imaging

MRI applications other than sampling optimization

Autocalibrating parallel MRI (plus k -space optimization)
by robust Bayesian blind deconvolution
Robust joint estimation / calibration:
B0 field map, relaxation, motion, . . .
Parallel transmit: Optimizing spokes design
Dynamic / 3D MRI:
Graphical models, belief propagation to factorize computations

Generic framework beyond magnetic resonance imaging

You can do penalized estimation efficiently?
You can do variational Bayesian inference!
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Outlook

Conclusions

Modern nonlinear image reconstruction:
Better images through robust low-level prior knowledge
k -space optimization makes the difference:

Specific to reconstruction method
Specific to signal class (natural/MR images)

Nonlinear Bayesian sampling optimization:
General, goal-directed alternative to randomized trial-and-error
Driven by scalable variational inference

Decoupling speeds up optimization dramatically
Penalized estimation technology inside
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Outlook

Collaborators

Hannes Nickisch (now Philips Research, Hamburg)
Rolf Pohmann, Bernhard Schölkopf (MPI Tübingen)

Matlab Code

http://www.mloss.org/software/view/269/

More Information

http://lapmal.epfl.ch/proj/ed_mri/index.shtml
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Backup

Experimental Results: 1/4 Nyquist

Low Pass

`2 = 8.0319
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Backup

Experimental Results: 1/4 Nyquist

VD Random

`2 = 8.8056
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Backup

Experimental Results: 1/4 Nyquist

Bayes Optim.

`2 = 6.0635
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