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Motivation
• Images in MRI are encoded in the Fourier domain by application of gradient magnetic 
fields:

y (ki) ≡
�

Dτ

x (τ ) e−2iπki·τ dτ ≡ �x (ki) .

• Standard acquisition strategies probe all frequencies one after the other, providing 
complete information at the required resolution.



• MRI images are sparse in well-chosen basis such as wavelet bases.
• Compressed sensing: sparse signals can be reconstructed from a few number of linear 
and non-adaptive measurements.
• Simple implementation: uniform random selection of Fourier coefficients.
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• MRI images are sparse in well-chosen basis such as wavelet bases.
• Compressed sensing: sparse signals can be reconstructed from a few number of linear 
and non-adaptive measurements.
• Simple implementation: uniform random selection of Fourier coefficients.

• State of the art method:
- Energy of MRI images are usually concentrated at low frequencies.
- Concentrate most of the measurements at low frequencies: Variable density 
sampling.
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[1] Lustig et al, “Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging” 
Magn. Reson. Med, 2007.
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• State of the art method:
- Energy of MRI images are usually concentrated at low frequencies;
- Concentrate most of the measurements at low frequencies.
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• What is the optimal shape of the variable density profile ?
• Can we modify the acquisition to obtain better reconstructions ?

Motivation

[1] Lustig et al, “Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging” 
Magn. Reson. Med, 2007.
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•     is recovered by solving the   -minimization problem�1

α� = arg min
ᾱ∈CN

�ᾱ�1 subject to y = AΩᾱ.

7

y = AΩ α, with AΩ = Φ∗ΩΨ ∈ Cm×N .

•     is probed by projection onto     randomly selected vectors of another orthonormal 
basis                                  . 

•                       denotes the indices of the selected basis vectors.
• The measurement vector            reads as:

m
Φ = (φ1, ...,φN ) ∈ CN×N

Ω = {l1, . . . , lm}
y ∈ Cm

x

Role of the coherence

α

Φ∗Ω ∈ Cm×N

Ψ ∈ CN×N α ∈ CN
=y ∈ Cm

•            is a   -sparse signal in an orthonormal basis               , i.e.              contains
     non-zero entries. 

x ∈ CN Ψ ∈ CN×Ns

s

α = Ψ∗x



is the mutual coherence between     and    .

• For some universal constants          and         , if

then    is the unique minimizer of the    -minimization problem with probability at least
                    .

• For a fixed sensing basis, the reconstruction quality depends on sparsity basis.

m � CNµ2s log4(N),
C > 0 γ > 1

µ = max
1�i,j�N

|�φi,ψj�| Ψ

8

Φ∗Ω ∈ Cm×N

Ψ ∈ CN×N α ∈ CN
=y ∈ Cm

α �1
1−N−γ log3(N)

Φ

[3] Candès et al, “Sparsity and Incoherence in Compressive Sampling,” Inverse Problems, 2007.
[4] Rauhut, “Compressive Sensing and Structured Random Matrices,” Theoret. Found. and 
Num. Methods for Sparse Recovery, 2010.
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• Sampling profile: A vector                     with              ,              , and
                             .

•     represents the probability that index     is selected.
• For some universal constants          and         , if

then    is the unique minimizer of the    -minimization problem with probability at 
least   .

• To reduce the number of measurement, we should find     that minimizes         .

m � CNµ2(p)s log2(6N/�),

11

is the weighted mutual coherence between     and    .

C > 0 γ > 1

Ψ

9

Φ∗Ω ∈ Cm×N

Ψ ∈ CN×N α ∈ CN
=y ∈ Cm

α �1

Φ

p = (pj)1�j�N pj ∈ (0, 1] 1 � j � N

µ(p) =
�m
N

�1/2
max

1�i,j�N

|�φi,ψj�|
p1/2i

pj

�p�1 =
�

1�j�N

pj = m

ε

p µ(p)

Sampling profile optimization

φj

[4] Rauhut, “Compressive Sensing and Structured Random Matrices,” Theoret. Found. and 
Num. Methods for Sparse Recovery, 2010.
[5] Puy et al., “On variable density compressive sampling”, IEEE Signal Process. Lett., 2011.



• Solve the following optimization problem

12

min
(p,q)∈RN×2

�B q�∞ + λ�p · q − 1�22 s.t. p ∈ Kτ Kτ = {p ∈ [τ, 1]N : �p�1 � m}

max
1�j�N

|�φi,ψj�|

Sampling profile optimization

[5] Puy et al., “On variable density compressive sampling”, IEEE Signal Process. Lett., 2011.
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• Solve the following optimization problem

13

min
(p,q)∈RN×2

�B q�∞ + λ�p · q − 1�22 s.t. p ∈ Kτ Kτ = {p ∈ [τ, 1]N : �p�1 � m}

prior information on the signal support in the sparsity basis

Sampling profile optimization
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• Modulate the signal by a random sequence                           of +/- 1 entries with 
                                       .

• The measurement vector becomes:

• We define the modulus-coherence as:

c = (cl)1�l�N ∈ RN

Spread spectrum technique
15

P(cl = −1) = P(cl = +1) = 1/2

y = AΩ α, with AΩ = Φ∗ΩCΨ ∈ Cm×N .

Φ∗Ω ∈ Cm×N

Ψ ∈ CN×N α ∈ CN
=y ∈ Cm

β (Φ,Ψ) = max
1�i,j�N

����
N�

k=1

|φ∗
kiψkj |2,



• The mutual coherence                                of this new sensing system satisfies

with probability at least       .

•  For some universal constants                 and           , if

then    is the unique minimizer of the    -minimization problem with probability at 
least                  .

• Universal sensing basis: sensing basis                with entries of equal complex 
magnitudes entries, e.g., the Fourier basis, the Hadamard basis.

• And the recovery condition becomes

Spread spectrum technique
16

µ � β (Φ,Ψ)
�

2 log (2N2/�),

µ = max
1�i,j�N

|�φi,C ψj�|

1− �

m � Cρ Nβ2 (Φ,Ψ) s log5(N),

ρ < log3(N) Cρ > 0

1−O
�
N−ρ

�α �1

Φ ∈ CN×N

β (Φ,Ψ) =
1√
N

Universality Optimality
m � Cρ s log

5(N).



Spread spectrum technique
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Spread spectrum technique
• Example of radio-interferometry and MRI.

• Replace the random pre-modulation by a linear chirp          .

• As the random modulation, it is a wideband signal that does not change the norm of 
the original signal.

• But the modulation is analog... One should change the measurement model:

eiπwτ2

AΩ = F∗ΩCUΨ ∈ Cm×N

Nw̄ = (1 + w̄)NN w̄N
∗ =



• Numerical simulations: radio interferometric acquisition.

Spread spectrum technique

[10] Wiaux et al., “Spread spectrum for imaging techniques in radio interferometry,” Mon. Not. 
R. Astron. Soc. 2009

Image courtesy of NRAO/AUI and J. M. Uson



•  Assume that the phase of the non-zero coefficients of     are randomly and uniformly 
between    and     . For a universal constant         , if 

then     is the unique minimizer of the    -minimization problem with probability at 
least  .

•  Two effects are competing with each other:

-     is decreasing with the spread spectrum phenomenon

-     is increasing linearly with the chirp rate

•  We should find the optimal trade-off between the two effects.

m � CNw̄ µ2
w̄s log2(6N/�),

α

0 2π C > 0

α �1
�

µw̄

Nw̄

µw̄ = max
1�i,j�N

|�fi,CUψj�|

Spread spectrum technique
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s2MRI
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[11] Puy et al., “Spread spectrum magnetic resonance imaging,” IEEE Tran. Med. Imag., 
submitted. 2011.
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• Proof of concept:
- Real 3D in vivo acquisition on a 7T scanner (Siemens, Erlangen, Germany).
- Chirp modulation implemented with the use of a 2nd order shim coil.

s2MRI



s2MRI
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Conclusion

• Incoherence between sparsity basis and sensing basis is an essential concept for 
compressive sampling. 

• We proposed:
- a coherence-driven optimization procedure for variable density sampling.
- a spread spectrum technique to optimize the acquisition in MRI or radio-

interferometry.

• In a discrete setting, the spread spectrum technique is universal and optimal for sensing 
matrices such as the Fourier or Hadamard basis.

• s2MRI performs better than VDS in all simulations.



Conclusion

Thank you for your attention.


