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Motivation

e Images in MRI are encoded in the Fourier domain by application of gradient magnetic

fields:

y (ki) = /D x (T) o 2Tk T o = T (k;) .

e Standard acquisition strategies probe all frequencies one after the other, providing
complete information at the required resolution.
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Motivation

e MRI images are sparse in well-chosen basis such as wavelet bases.

e Compressed sensing: sparse signals can be reconstructed from a few number of linear
and non-adaptive measurements.
e Simple implementation: uniform random selection of Fourier coeflicients.
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Motivation

e MRI images are sparse in well-chosen basis such as wavelet bases.

e Compressed sensing: sparse signals can be reconstructed from a few number of linear
and non-adaptive measurements.

e Simple implementation: uniform random selection of Fourier coeflicients.

Non-linear
reconstruction

= = = = = Fourier transform === = =

(gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




Motivation

e MRI images are sparse in well-chosen basis such as wavelet bases.
e Compressed sensing: sparse signals can be reconstructed from a few number of linear
and non-adaptive measurements.

e Simple implementation: uniform random selection of Fourier coeflicients.

Non-linear
reconstruction

= = = = = Fourier transform = = =

e State of the art method:
- Energy of MRI images are usually concentrated at low frequencies.
- Concentrate most of the measurements at low frequencies: Variable density
sampling.
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Motivation

e State of the art method:
- Energy of MRI images are usually concentrated at low frequencies;

- Concentrate most of the measurements at low frequencies.

[1] Lustig et al, “Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging” -( I){(-
BM Magn. Reson. Med, 2007.
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Motivation

e State of the art method:
- Energy of MRI images are usually concentrated at low frequencies;

- Concentrate most of the measurements at low frequencies.
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reconstruction

= = === Fourier transform = = = = =

i [1] Lustig et al, “Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging” -( I){l-
BM Magn. Reson. Med, 2007.
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Motivation

e State of the art method:
- Energy of MRI images are usually concentrated at low frequencies;

- Concentrate most of the measurements at low frequencies.

>

Non-linear
reconstruction

= = === Fourier transform = = = = =

e What is the optimal shape of the variable density profile 7
e Can we modify the acquisition to obtain better reconstructions 7

i [1] Lustig et al, “Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging” -( I){l-
BM Magn. Reson. Med, 2007.
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Role of the coherence

o x c CVis a s-sparse signal in an orthonormal basis W & CV*N ie. a = U*zx contains
S non-zero entries.

e x is probed by projection onto m randomly selected vectors of another orthonormal
basis ® = (¢1, ..., o) € CV*V,

e O ={ly,...,l;,} denotes the indices of the selected basis vectors.

e The measurement vector y € C™ reads as:

y = Ag a, with Ag = d5W € C"™*V,
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e « is recovered by solving the /1-minimization problem

a” = arg min ||@||; subject to y = Aqa.

acCN

(gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




Role of the coherence
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e For some universal constants C' >0 and v > 1, if
m = C slog*(N),

then a is the unique minimizer of t 1-minimization problem with probability at least
1 _ N~ 7log”(N)

p= max |(¢i,¥;)|is the mutual coherence between ¢ and V.
I<t,jSN

e For a fixed sensing basis, the reconstruction quality depends on sparsity basis.

[3] Candés et al, “Sparsity and Incoherence in Compressive Sampling,” Inverse Problems, 2007. -( I){ l-

[4] Rauhut, “Compressive Sensing and Structured Random Matrices,” Theoret. Found. and

Num. Methods for Sparse Recovery, 2010. ECOLE POLYTECHNIQUE
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Role of the coherence

Dirac Haar
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Sampling profile optimization
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e Sampling profile: A vector p = (p;)1<;<n with p; € (0,1],1 < j < N, and

Ipll: = Z pj =m.

ISJSN
e p; represents the probability that index ¢; is selected

e For some universal constants C' > 0 and v > 1,

> C slog*( 6N /€),
then a is the unique W ¢1-minimization problem with probability at
least ¢. I (i)
pu(p) = (—) max D I is the weighted mutual coherence between ¢ and W .
N 1<i,j <N p;l/ 2

e To reduce the number of measurement, we should find p that minimizes u(p) .

P \ / , [4] Rauhut, “Compressive Sensing and Structured Random Matrices,” Theoret. Found. and -( I){ l-
- B M Num. Methods for Sparse Recovery, 2010.
. [5] Puy et al., “On variable density compressive sampling”, IEEE Signal Process. Lett., 2011. ECOLE POLYTECHNIQUE
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Sampling profile optimization

e Solve the following optimization problem

. N
min ||Bgllec + Allp-g— 1[5 s:t. p€ K, Kr={pelr1" :|plL <m}
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Sampling profile optimization

e Solve the following optimization problem

. N
min  [|Bg|lw + Allp-g— 1|5 s.t. p€ K, Kr={pelr,1]" :|p|l1 <m}
(p,q)ERN %2
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Spread spectrum technique
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Spread spectrum technique

e Modulate the signal by a random sequence ¢ = (¢;)1<i<nN € RN of + /- 1 entries with
P(¢c; =—-1) =P(¢g =+41) =1/2.

® T'he measurement vector becomes:
y = Ag a, with Ag = ¢5CW € C™*V,

yeC" |l = o5cCcmN I I ” I
: ; ll 1 ll i wechMN acCV
e We define the modulus-coherence as:
N
6] ((I), \U) = 1%2?%(]\]\ ]; |¢m¢kg| )
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Spread spectrum technique

e The mutual coherence ; = nax (i, Cap;)| of this new sensing system satisfies
Isigs

p < B(P, W) \/2log (2N2%/e),
with probability at least1 — e.

e For some universal constants p < log®(N) and Cp,>0,if

> 0, N 5" (),

then o is the unique minimizer of the ¢;-minimization problem with probability at
least 1 — O (N~°).
o Universal sensing basis: sensing basis ¢ € CV*N with entries of equal complex

magnitudes entries, e.g., the Fourier basis, the Hadamard basis.

ﬁ(q)vw):\/%

e And the recovery condition becomes

m > C, slog”’(N).
Universality Optimality
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Spread spectrum technique
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Dirac Haar Fourier
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[6] Do T et al. “Fast compressive sampling with structurally random matrices,” ICASSP, 2008.

[7] Romberg, “Compressive sensing by random convolution,” STAM J. Imaging Sciences, 2009.

[8] Tropp et al., “Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals,” IEEE Trans. Inf. Theory, 2010.
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Spread spectrum technique

e Eixample of radio-interferometry and MRI.

e Replace the random pre-modulation by a linear chirp elmwr’
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e As the random modulation, it is a wideband signal that does not change the norm of

the original signal.

e But the modulation is analog... One should change the measurement model:
Aq = FECUW € ¢

- £ —
N w N Ng = (1+w)N
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Spread spectrum technique

e Numerical simulations: radio interferometric acquisition.

Original image Without chirp modulation With chirp modulation

Image courtesy of NRAO/AUI and J. M. Uson

[10] Wiaux et al., “Spread spectrum for imaging techniques in radio interferometry,” Mon. Not. .( I)fl-

R. Astron. Soc. 2009 ECOLE POLYTECHNIQUE
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Spread spectrum technique

e Assume that the phase of the non-zero coefficients of o are randomly and uniformly

between (0 and 27 . For a universal constant C' > 0, if

m = C 810g2(6N/e),

then « is the unique minimizer of the ¢;-mMjmization problem with probability at

pe = max |(fi, CUgp;)]

least €.
1<, <N

@ Two effects are competing with each other:
- g 1s decreasing with the spread spectrum phenomenon
- N is increasing linearly with the chirp rate

® We should find the optimal trade-off between the two effects.
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Spread spectrum technique
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[11] Puy et al., “Spread spectrum magnetic resonance imaging,” IEEE Tran. Med

submitted. 2011.
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saMRI

Variable density sampling
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SZMRI

e Proof of concept:

- Real 3D in vivo acquisition on a 7T scanner (Siemens, Erlangen, Germany).

- Chirp modulation implemented with the use of a 2" order shim coil.
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25% 50% 100% Inverse F.T.

soMRI - Axial

o

soMRI - Coronal

(gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




-V -

Conclusion
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Conclusion

e Incoherence between sparsity basis and sensing basis is an essential concept for
compressive sampling.

e We proposed:
- a coherence-driven optimization procedure for variable density sampling.

- a spread spectrum technique to optimize the acquisition in MRI or radio-

interferometry:.

e In a discrete setting, the spread spectrum technique is universal and optimal for sensing
matrices such as the Fourier or Hadamard basis.

e soMRI performs better than VDS in all simulations.
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Conclusion

Thank you for your attention.
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