

Delivering Transformational Science with the new generation of radio telescopes

Paul Alexander

Paul Alexander

Very Brief Introduction to Radio Astronomy Imaging

Paul Alexander

Radio Astronomy Imaging

• For imaging radio astronomy has for 5 decades made use of interferometers

UNIVERSITY OF CAMBRIDGE

- Provide a measurement of Fourier Components of the sky brightness distribution
- Approximate 2D Fourier relationship for small fields of view (FoV) relating sky and measurements

- Use rotation of the Earth relative to sky to measure different Fourier components
- Complications arise for large FoV due to spherical sky
- Complications arise due to telescopes moving in 3D as Earth rotates

Paul Alexander

UNIVERSITY OF CAMBRIDGE

Standard interferometer

Visibility:

$$V(B) = E_1 E_2^*$$

= $I(s) \exp(i \omega B \cdot s/c)$

- Resolution determined by maximum baseline $\theta_{max} \sim \lambda / B_{max}$
- Field of View (FoV) determined by the size of each dish

 θ_{dish} ~ λ / D

SKY Image

Paul Alexander

Aperture arrays

Paul Alexander

Digitise,

delay & beam

Correlate

X

Х

X

Calibrate, grid, FFT

X

form

Aperture arrays

Aperture-Array station

- ~25000 phased elements
- Equivalent to one dish
 - These are then cross-correlated

Beam form:

- Apply delay gradients to point electrically
- Multiple delay gradients
 > many beams and large FoV

Paul Alexander

Process

Future Radio Astronomy Imaging

X

What we measure from a pair of telescopes:

 $V_{ij} = \int \boldsymbol{J}_i \otimes \boldsymbol{J}_j^* < \boldsymbol{E}_0 \otimes \boldsymbol{E}_0 > \exp(i2\pi(\boldsymbol{s} \cdot \boldsymbol{b}_{ij} + f\tau_i - f\tau_j u)) \mathrm{d}^2 \boldsymbol{s}$

• In practice we have to deal with this equation, but for simplicity consider a scalar model

$$V_{ij} = \int A_{ij} I \exp(i2\pi (\boldsymbol{s} \cdot \boldsymbol{b}_{ij} + f\tau_i - f\tau_j)) d^2 \boldsymbol{s}$$

- The delays allow us to follow a point on the sky
 The J_i are direction dependent Jones matrices which include the effects of:
 ➢ propagation from the sky through the
 - atmosphere
 - scattering
 - coupling to the antenna/detector
 - gain

Paul Alexander

Where we include time delays to follow a central point. In terms of direction cosines relative to the point we follow and for a *b* = (*u*,*v*,*w*)

$$V_{ij} = \int A_{ij}(l,m) I(l,m) \exp(i2\pi(ul+vm+w(\sqrt{1-l^2-m^2}-1))) \frac{\mathrm{d}l\mathrm{d}m}{\sqrt{1-l^2-m^2}}$$

UNIVERSITY OF

S

 $b_{ij} = \overline{\frac{r_i - r_j}{r_i}}$

 If we can calibrate our system we can apply our telescope-dependent calibrations and then for small FoV we can approximate

$$V(u,v) \approx \int A(l,m)I(l,m)\exp(i2\pi(ul+vm))$$

- And the measured data are just samples of this function
- In this case we can estimate the sky via Fourier inversion and deconvolution

Paul Alexander

Formulation

 Sampling of the Fourier plane is determined by the positioning of the antennas and improved by the rotation of the earth

Paul Alexander

KILOMETRE ARRAY

The Square Kilometre Array

Precursors and Pathfinders

Paul Alexander

What is the Square Kilometre Array (SKA)

Next Generation radio telescope - compared to best current instruments it is ... E-MERLIN ~100 times sensitivity ~ 10⁶ times faster imaging the sky More than 5 square km of collecting area on sizes 3000km

Street 1 1

eVLA 27 27m dishes Longest baseline 30km

GMRT 30 45m dishes Longest baseline 35 km

Indrell Bank Mk

What is the Square Kilometre Array (SKA)
Next Generation radio telescope – compared to best current instruments it is ...
~100 times sensitivity
~10⁶ times faster imaging the sky
More than 5 square km of collecting area on sizes 3000km

Will address some of the key problems of astrophysics and cosmology (and physics)

Builds on techniques developed here in Cambridge
It is an interferometer

Uses innovative technologies...
Major ICT project
Need performance at low unit cost

Paul Alexander

Paul Alexander

Phased Aperture array

Paul Alexander

also a Continental sized Radio Telescope

- Need a radio-quiet site
- Very low population density
- Large amount of space
- Possible sites (decision 2012)
 - Western Australia
 - Karoo Desert RSA

Paul Alexander

ILOMETRE ARRAY

Sensitivity comparison

UNIVERSITY OF CAMBRIDGE

Paul Alexander

Paul Alexander

Artist renditions from Swinburne Astronomy Productions

Programme leading to SKA

Science with pathfinders and precursors

- LOFAR Now
 - 32 NL stations + >7 international
 - Aperture array 10-90MHz, 110-250MHz
 - Up to 32 fields of view
 - EoR, cosmic magnetism, surveys for early AGN
- ASKAP 2013 / 2014, AU
 - 30 12-m dishes equipped with PAFs
 - 20 sq-degrees FoV 800MHz 2GHz
 - Local HI, deep surveys, pulsar search and timing, cosmic magnetism
- MeerKAT 2014, RSA
 - 70 13.5-m dishes SKA design
 - 1 sq-degree FoV 800MHz 15GHz in 3 bands
 - Local HI, deep surveys, pulsar timing, search for z~7-10 CO

UNIVERSITY OF

Paul Alexander

The Science Aims and the Imaging Challenges

Paul Alexander

SKA Key Science Drivers

ORIGINS

Neutral hydrogen in the universe from the Epoch of Re-ionisation to now

When did the first stars and galaxies form? How did galaxies evolve? Role of Active Galactic Nuclei Dark Energy, Dark Matter

Cradle of Life

FUNDAMENTAL FORCES
 Pulsars, General Relativity & gravitational waves

Origin & evolution of cosmic magnetism

TRANSIENTS (NEW PHENOMENA)

Science with the Square Kilometre Array

Science with the Square Kilometre Array (2004, eds. C. Carilli & S. Rawlings, New Astron. Rev., 48)

Galaxy Evolution back to z~10?

~ 3000 galaxies

~15 radio sources

Paul Alexander

Galaxy Evolution back to z~10?

Paul Alexander

The Imaging Challenge

This illustrates one of our main challenges

- To make effective use of the improved sensitivity we face an immediate problem
- Typically within the field of view of the telescope the noise level will be $\sim 10^6 10^7$ times less than the peak brightness
- We have to achieve sufficiently good calibration and image fidelity to routinely achieve a "*dyanamic range*" of > 10⁷:1
- With very hard work now we can just get to 10⁶:1 in some fields

The Imaging Challenge

- Telescope calibration now becomes critical
- We also want to survey the sky very quickly to achieve our science aims
 - We are designing our telescope to have a large FoV

We can no longer make the approximation of we used above and must concern ourselves with (better approximations to) the full problem

CAMBRIDGE **Cosmology & the History of**

- After recombination (CMB) Universe if neutral, but we know that hydrogen (not in galaxies) is hot and ionised
- Re-ionization occurs when first objects (galaxies and AGN) form via UV- and X-ray emission
- Epoch of Reionisation EoR next major challenge for Cosmology

Hydrogen

UNIVERSITY OF

- ${}^{2}S_{1/2}$ ground state of HI split by the effects of nuclear spin
- $\Delta E = 5.8 \times 10^{-6} \, \text{eV}$

21-cm line at 1420 MHz.

Paul Alexander

KILOMETRE ARRAY

Hydrogen Evolution

Spin temperature is defined via and radiation processes

$$\frac{n_2}{n_1} = \frac{g_2}{g_3} \exp\left(\frac{h\nu}{k_B T_S}\right)$$

and determined by collisional

The HI intensity in Rayleigh-Jeans limit is given by

$$T_{b} = 27x_{\rm HI}(1 + \delta_{B}) \begin{pmatrix} T_{S} - T_{\rm CMB} \\ T_{S} \end{pmatrix} \begin{pmatrix} \frac{1+z}{10} \end{pmatrix}^{1/2} \begin{pmatrix} \frac{\partial_{r}v_{r}}{(1+z)H(z)} \end{pmatrix}^{-1} mK$$

Ionisation Baryon overdensity Peculiar velocity relative to Hubble flow

Paul Alexander

Hydrogen Evolution

- After recombination gas and CMB cool adiabatically
 - Kinetic temperature: $T_{\rm K} < T_{\rm CMB}$
- Density is large enough that collisions give $T_{\rm S} \sim T_{\rm K}$
- As density falls CMB determines $T_{\rm S}$ and $T_{\rm S} \rightarrow T_{\rm CMB}$
- As first objects form UV resonant scattering couples T_S to T_K
 - Overdensities in dark matter and baryonic gas collapse
 - Gas temperature increases and so does T_S due to heating from first stars and AGN
 - UV and X-ray flux also ionise the gas → T_S → 0

Paul Alexander

Paul Alexander

Paul Alexander

Paul Alexander

Paul Alexander

- The structures to be observed have a flux of
 0.3μJy/Beam (1 Jy = 10⁻²⁶ Wm⁻²Hz⁻¹sr-1)
- Need to observe a region of about 25 sq degrees
 - In this region expect to have at least one source
 1 Jy
 - "dyanamic range" of > 3 x 10⁶:1
- In frequency range 50 250 MHz even in most remote areas must deal with man-made Radio Frequency Interference (RFI)
- We are attempting to measure a broad spectral signal is the presence of a very strong "foreground"

The Imaging and Data Processing Challenges of this Experiment

- Foreground is due to continuum emission from our own galaxy and discrete extragalactic sources
- Up to 10⁵ times brighter than the signal we are measuring
- Need to filter or subtract this foreground
 - Frequency and spatial filtering
 - Challenge for calibration and imaging

Paul Alexander

- At the end of the EoR Neutral hydrogen is in galaxies – fuel for star formation
- SKA + ALMA will follow gas content

Galaxy Evolution

- Detect SF galaxies to z = 7 (25 M/yr)
- Distinguish AGN in galaxies to z ~ 7
- HI in galaxies to z=2 in emission and higher in absorption → dynamical studies

Paul Alexander

- The SKA will detect around 20,000 pulsars in our own galaxy
- Timing net of ms pulsars to detect gravitational waves via timing residuals
- Relativistic binaries give unprecedented strongfield test of gravity

UNIVERSITY OF CAMBRIDGE

Paul Alexander

KILOMETRE ARRAY

The Magnetic Universe

0.2

0.4

- Magnetic fields appear to be universal
 - Only large-scale manifestation of EM force
 - Highly ionised gas → flux conserved
- Magnetic fields can influence the dynamics of systems
 - Exert a magnetic pressure or tension
 - Known to be important in: AGN, star-forming regions, galaxy clusters, stars, large scales?

What is there cosmological origin & evolution?

UNIVERSITY OF CAMBRIDGE

Observing Magnetic Fields

Observe Faraday Rotation against background polarized synchrotron source

Simulation of background sources behind M31 expected with the SKA Optical emission, radio emission, polarized radio emission

Beck and Gaensler

Paul Alexander

Large-Scale Structure

- Large-scale structure redshifts of 10⁹ galaxies
 - Evolution of Baryonic Acoustic Oscillations with z – standard rod
 - Power-spectrum on largest angular scales as a function of z
 - Damping on large scales → constrains Neutrino mass

Paul Alexander

... and so much more

- Star formation history of the universe
- Physics of active galaxies, accretion discs, pulsars, jets,
- Radio emission from decaying dark matter
- The cosmic web and structure formation
- Measuring changes in the fine structure constant
- Interstellar medium of galaxies
- Astrobiology direct detection of large molecules
 - ... and evidence for intelligent life?

Most importantly what we haven't predicted

The Processing Challenge

Paul Alexander

SKA Overall System

UNIVERSITY OF CAMBRIDGE

Paul Alexander

SQUARE KILOMETRE ARRAY

Some numbers to remember

Fastest HPC today – 2 PFlop

Total internet data rate ~ 20 Tb/s

BUT on your desktop you can have ~1 TFlop

Paul Alexander

Data rates to the correlator

KILOMETRE ARRAY

Paul Alexander

Dense AA

AA, Number of elements $N_{\rm e} \sim 65000$; $N_{\rm b} << N_{\rm e}$ limited by data rate

UNIVERSITY OF

CAMB

250 sq-deg across band $N_{\rm b} \sim 1200$ (Memo 100)

PAFs FoV is constant across the band

 $N_{\rm b} \sim 7$ to give 20 sq-deg across the band $G_1 \sim 60$ Gb/s (Memo 100)

SOUARE KILOMETRE ARRAY

- After correlation the data rate is fixed by straightforward considerations
 - > Must sample fast enough (limit on integration time) δt
 - > Baseline \propto B/ λ
 - > UV (Fourier) cell size $\propto D/\lambda$

 $\Omega \delta t \frac{B}{\lambda} < \frac{1}{X} \frac{D}{\lambda}$

Must have small-enough channel width to avoid chromatic aberration

 $\delta\left(\frac{B}{\lambda}\right) < \frac{1}{X}\frac{D}{\lambda}$

• Standard results for integration/dump time and channel width

 Can reduce this using baseline-dependent integration times and channel widths

Example data rates SKA1

- Aperture Array Line experiment (e.g. EoR)
 - 100 sq degrees; 10000 channels over 250 MHz bandwidth

5 GB/s sustained

- Pointed observations, for periods of up to an hour
 - Small FoV; 32000 channels over 1 GHz

50 GB/s sustained

- Pointed observations, for periods of up to an hour
 - Data sets
 - > Up to 50 TB UV (Fourier) data
 - Images ~ 4 TB; up to 250 TB/day to archive

Example Data rates SKA2

Experi	ment			3000 Dis	shes + SPF	1630 Dish	es + PAFS	250 AA	stations
Description	B _{max} (km)	Δf (MHz)	f _{max} (MHz)	Achieve d FoV ¹	Data rate (Tb/s)	Achieved FoV ¹	Data rate (Tb/s)	Achieved FoV ¹	Data rate (Tb/s)
Survey: High surface brightness continuum	5	700	1400	0.78	0.055	15	0.11	108	0.03
Survey: Nearby HI high res. 32000 channels	5	700	1400	0.78	1.0	15	2.0	108	2.6
Survey: Medium spectral resolution; resolved imaging (8000)	30	700	1400	0.78	1.2	15	2.4	108	5.4
Survey: Medium resolution continuum	180	700	1400	0.78	33.1	15	66	108	14.1
Pointed: Medium resolution continuum deep observation	180	700	1400	0.78	33.1			0.78	0.15
High resolution with station beam forming ²	1000	2000	8000	0.0015	33.4				
High resolution with station beam forming ³	1000	2000	8000	0.0015	429				
Highest resolution for deep imaging ²	3000	4000	10000	0.001	391				

Notes

- 1. Achieved FoV is at f_{max} and has units of degrees squared. For the AA and PAFs we calculate the data rate assuming it is constant across the band.
- 2. Assuming that for the dynamic range the FoV of the station only has to be imaged
- 3. Assuming that for the dynamic range the FoV of the dish must be imaged

Paul Alexander

Data Products

Experiment	T _{obs}	<i>B</i> /km	<i>D</i> /m	$N_{ m b}$	N _{ch}	$N_{ m v}$	Size / TB
High resolution spectral line	3600	200	15	1	32000	5 10 ¹³	200
Survey spectral line medium resolution	3600	30	56	1000	32000	8 10 ¹³	330
Snapshot continuum – some spectral information	60	180	56	1200	32	7 10 ¹²	30
High resolution long baseline	3600	3000	60	1	4	$7 \ 10^{14}$	360

- ~0.5 10 PB/day of image data
- Source count ~10⁶ sources per square degree
- ~10¹⁰ sources in the accessible SKA sky, 10⁴ numbers/record
- ~1 PB for the catalogued data

100 Pbytes – 3 EBytes / year of fully processed data

Paul Alexander

Where does the data rate drop?

For SKA₂

Data rate out of correlator exceeds input data rate for 15-m dishes for baselines exceeding ~ 130km (36km if single integration time)

At best for dishes output data rate ~ input; AA's reduction by ~10⁴

• Image size: $a^2 N_{ch} (B/D)^2 N_b$ Ratio UV to "image" data

 $\sim 0.06 \, T_{obs} \, N^2 g(B) \frac{\Delta f}{f} \frac{1}{a_t a_f} \frac{1}{a^2} \frac{N_p^2}{N_{ch}} \sim 210 \, \left(\frac{T_{obs}}{1 \mathrm{min}}\right) \left(\frac{N}{1000}\right)^2 \left(\frac{N_{ch}}{32000}\right)^{-1}$

Major reduction in data rate occurs between UV data and image data

WP2 Meeting 2010

WP2.6.5 SKA Data Products and Flow

Paul Alexander

Processing model

Paul Alexander

The SKA Processing Challenge

UNIVERSITY OF

Paul Alexander

KILOMETRE ARRAY

Achieving high dynamic range now

What do we know we have to include in an analysis:

Include	Discussion	Maturity
Antenna-based complex gains	Standard calibration and self calibration – iterative	\checkmark \checkmark \checkmark \checkmark
Removing sources in global sky model	Removing bright sources from UV data even with local phase solution is relatively robust	$\checkmark \checkmark \checkmark$
RFI and "bad data" excision	 Can be critically important: still largely done by hand for GMRT, eVLA and LOFAR Expert algorithms not well developed 	$\checkmark \checkmark \checkmark$
Bandpass calibration	Well defined, but often more problematic than it should be – software limitation	√√√?

Include	Discussion	Maturity
Debugging the system	We learn a great deal about our instruments over time and correct often 2 nd order errors	$\checkmark \checkmark \checkmark \checkmark$
Position-dependent effects	 Hugely Important relatively recent advance Time dependent pointing errors – antenna models may be limit Position-dependent phase screen – critically important for the ionosphere Many algorithms (peeling. A- projection) 	
Full stokes imaging	A position-dependent effect – polarization response changes across FoV	~

Paul Alexander

Conclusions

The next generation radio telescopes offer the possibility of transformational science, but at a cost **A major processing challenge**

- Need to analyse very large amounts of streaming data
 - Current algorithms iterative need to buffer data
- Problem too large to, for example, use a direct Bayesian approach
- Are our (approximate) algorithms good enough to take into account all error effects that need to be modelled?
- Only recently have we had to consider most of the effects what have we forgotten?
- Phased approach to SKA is very good for the processing performance increasing and critically we can continually learn

Paul Alexander