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® Classification of functional connectivity
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® |mportant point for interpretation: ROls as nodes.

3 *[Achard et al., J. Neurosci 2006]
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Functional connectivity as a graph

® The correlation matrix (minus the diagonal) can be
seen as the adjacency matrix A of a “functional

connectivity graph™:
® Vertices correspond to voxels or regions
e Edge labels encode pairwise strength of temporal dependence
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® Much insight has been gained from descriptions of brain
connectivity graphs and on post-hoc, group-level analysis

® We would like a model from which we can do prediction

® Principle: adopt a “brain decoding” (pattern recognition /
predictive modelling / classification) approach for
connectivity. T his equips us with interesting tools:
® Enables single-subject inference
® Provides complementary information (activity vs. connectivity)

® Useful where an analytical model is intractable (“How does
connectivity change between state A and state B?”)

e We'll need:

® A clear definition of brain connectivity graphs
e Effective methods to classify these graphs
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Connectivity graphs as labelled graphs

® Weighted “brain connectivity graphs” can be
expressed formally as labelled graphs.

® |abelled graphs are written: 9= (V.E,,5)

® V:the set of vertices (nodes, brain regions, ICA components)
® E:the set of edges (connections between nodes)

® (:vertex labelling function (returns a name or number for each
node, for example the anatomical label of the region)

® [3: edge labelling function (returns a name or number for each
edge, for example the temporal correlation strength)

® A square adjacency matrix A can encode the presence/absence
of connections, and their strengths.



Connectivity graphs as restricted labelled graphs

® Functional brain networks obtained by atlasing can
adequately be modelled by a restricted class of labelled graphs
we call graphs with fixed-cardinality vertex
sequences, a subclass of Dickinson et al’s graphs with unique
node labels:

® Fixed number of vertices for all graph instances: Vi |V;| =M

® Fixed ordering of the set (sequence) V: V = (v1,02,...,um)
® Scalar edge labelling functions: B (vi,v;) =R

® Undirected: AT = A

® This is a very restricted (but still expressive) class of graphs

® This limits the effectiveness of many classical methods for
classifying general graphs (based on graph matching).

7 [Richiardi et al., ICPR,2010] [Dickinson et al., |JPRAI, 2004]
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Embedding connectivity graphs

® Representing the connectivity graph in a vector

s?ace via graph embedding allows the use
of a vast statistical machine learning repertoire =N
® Here we're not interested in the arc crossing minimisation %é%
pbroblem or planar graphs =
® VWe proposed several ways i ;
of doing this, including: gy =

|. Direct embedding

embeddin7

2. Dissimilarity embedding

3. Graph and vertex attribute
embedding
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|: Direct graph embedding

® Direct embedding provides a suitable vector-space
representation for the class of graphs of interest
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Experimental results: cognitive

® Data: |5 subjects, each in movie watching (14 min) and rest (8 min)

®  Question: can we infer “brain state” (rest versus movie) across subjects?

® Results: yes, 80%-97% accuracy in CV in the low subbands
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[Richiardi et al., Neuroimage, 201 1]

Regional activity and connectivity have
an inverse relationship

Nir et al.* also report decoherence
during stimulus

*[Nir et al., Neuroimage, 2006]
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2: dissimilarity embedding

Principle Fixed dissimilarity

class | prototypes class 2 prototypes

| Edge label disssimilarity

Y ‘5(27])_6/(27])‘ Cz'jEC,C;jGC/
d(CZ], Cij) - { K otherwise
Graph dissimilarity

£ |E|

d(g,p) =) Y dlcij, i)

i=1 j=i+1

d(g,p) = 3]|lag — a,||1 (if no missing edges)

Dissimilarity metric learning

A(g,p) = llag — allp = 1/(ay — 2,)7D(a, — ay)

Embedding vector
e (9) = (d(g,p1), -, d(g,pn)) € R

[Richiardi et al., ICPR 2010]
based on [Riesen & Bunke, Int. . Pat. Rec. Artif. Int. 2009]
| 4 and [Xing et al. NIPS 2002]
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3:Attributes of connectivity graphs

® Graphs G, H are isomorphic iff there exists

a permutation matrix P s.t. PA P’ = A,

JAN

® In our case (atlased connectivity graph): P =1

® Hence connectivity graphs are isomorphic iff

gg :(E'h and
\V/Z,] Bg(viavj) — 5h(vi,7}j)

® Graph invariant: (set of) parameter(s)
yielding the same value for isomorphic graphs

To compare noisy connectivity graphs we are more
interested in €-isomorphism, and €-invariants™

Some invariants may degenerate depending on |V|:
non-isomorphic graphs may have the same value

We use several invariants to mitigate degeneracy™*

*[Jain & Wysotzki, Neurocomputing, 2005]

|7 ** as in chemometrics: [Bonchev et al,] Comput Chemistry 1981]
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Experiments

® Data: 26 subjects: |5 young (18-33, mean 24), | | old

(62-76, mean 67). 9.5 minutes resting-state, TR 1.1Is.

® Question: Can we predict the age group of an unseen

subject from graph/vertex properties of resting-state

connectivity graphs?

® Results: only global and local efficiency are convincing
(up to 89% accuracy). But on this dataset this works
better than direct embedding.
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[Richiardi et al., PRNI, 201 1]
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activation changes during
memory tasks**
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[Richiardi et al., PRNI, 201 1]
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In addition, the lingual
gyrus shows age-related
activation changes during
memory tasks**

*[Achard & Bullmore, PLoS CompBiol, 2007]

*[Mencl et al., Micros Res.Tech., 2000]
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® Whole-brain connectivity decoding is applicable to a
range of cognitive and clinical neuroscience problems

® |t can be used in a predictive setting

® W/e can trivially restrict analysis to small subnetworks (e.g. speech
processing areas)

® We can visualise results both in terms of connections and in terms
of regions

® |n clinical applications, it is sensitive to gray matter, white matter; and
small-vessel damage, and is complementary to VBM and TBSS-style
analysis



Conclusion

® Whole-brain connectivity decoding is applicable to a
range of cognitive and clinical neuroscience problems

® |t can be used in a predictive setting

® W/e can trivially restrict analysis to small subnetworks (e.g. speech
processing areas)

® We can visualise results both in terms of connections and in terms
of regions

® |n clinical applications, it is sensitive to gray matter, white matter; and
small-vessel damage, and is complementary to VBM and TBSS-style
analysis

® Of course there is still much work to do: physiological
noise, modelling, and interpretation (where do LF
oscillations come from, what are they useful for?) are
currently weak points.

19



® Medical Image Processing Lab, EPFL/ U. of Geneva
® N. Leonardi, D.Van DeVille

® [LabNIC, U. of Geneva

® P Vuilleumier, S. Schwartz, H. Eriylmaz, M. Van Der Meulen

® Neurology, University hospital of Lausanne
® M.Gschwind, S. Simioni, |-M.Annoni, M. Schluep

e CIBM, Geneva University Hospitals

® F Lazeyras

® GIPSA-Lab, Institut National Polytechnique de Grenoble
® Sophie Achard

® Brain Mapping Unit, University of Cambridge

® Ed Bullmore

® |[nst. of Computer Science and Applied Mathematics, U. of Bern
® H.Bunke, K. Riesen

® Centre for Computational Statistics and Machine Learning,
UCL

® |.Mourao-Miranda, A. Marquand

20



