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Agenda for this talk

• From fMRI time-series to functional 
connectivity graphs

• Classification of functional connectivity 
graphs using embedding
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*[Achard et al.,  J. Neurosci 2006]

• Important point for interpretation: ROIs as nodes.



Functional connectivity as a graph
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Functional connectivity as a graph
• The correlation matrix (minus the diagonal) can be 

seen as the adjacency matrix A of a “functional 
connectivity graph”: 
• Vertices correspond to voxels or regions
• Edge labels encode pairwise strength of temporal dependence
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• Much insight has been gained from descriptions of brain 
connectivity graphs and on post-hoc, group-level analysis
• We would like a model from which we can do prediction

• Principle: adopt a “brain decoding” (pattern recognition / 
predictive modelling / classification) approach for 
connectivity. This equips us with interesting tools:
• Enables single-subject inference

• Provides complementary information (activity vs. connectivity)

• Useful where an analytical model is intractable (“How does 
connectivity change between state A and state B?”)

• We’ll need:
• A clear definition of brain connectivity graphs

• Effective methods to classify these graphs



Connectivity graphs as labelled graphs

• Weighted “brain connectivity graphs” can be 
expressed formally as labelled graphs.

• Labelled graphs are written:

• V: the set of vertices (nodes, brain regions, ICA components)

• E: the set of edges (connections between nodes)

• α: vertex labelling function (returns a name or number for each 
node, for example the anatomical label of the region)

• β: edge labelling function (returns a name or number for each 
edge, for example the temporal correlation strength)

• A square adjacency matrix A can encode the presence/absence 
of connections, and their strengths.
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g = (V,E,α,β)



Connectivity graphs as restricted labelled graphs
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• Functional brain networks obtained by atlasing can 
adequately be modelled by a restricted class of labelled graphs 
we call graphs with fixed-cardinality vertex 
sequences, a subclass of Dickinson et al.’s graphs with unique 
node labels:

• Fixed number of vertices for all graph instances:

• Fixed ordering of the set (sequence) V:

• Scalar edge labelling functions: 

• Undirected: 

• This is a very restricted (but still expressive) class of graphs

• This limits the effectiveness of many classical methods for 
classifying general graphs (based on graph matching).

 [Dickinson et al., IJPRAI, 2004]

β : (vi, vj) �→ R

V = (v1, v2, . . . , vM )

∀i |Vi| = M

AT = A

[Richiardi et al.,  ICPR, 2010]
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Embedding connectivity graphs
• Representing the connectivity graph in a  vector 

space via graph embedding allows the use 
of a vast statistical machine learning repertoire
• Here we’re not interested in the arc crossing minimisation 

problem or planar graphs
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Embedding connectivity graphs
• Representing the connectivity graph in a  vector 

space via graph embedding allows the use 
of a vast statistical machine learning repertoire
• Here we’re not interested in the arc crossing minimisation 

problem or planar graphs

• We proposed several ways
of doing this, including:

1. Direct embedding

2. Dissimilarity embedding

3. Graph and vertex attribute
embedding
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1: Direct graph embedding
• Direct embedding provides a suitable vector-space 

representation for the class of graphs of interest
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(1, 1) . . . (1, |Vi|)

. . .
(|Vi|, |Vi|)





Ai ∈ R|Vi|×|Vi|




(1, 2)
...

(|Vi|− 1, |Vi|)





Bi ∈ R
�|Vi|
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Experimental results: cognitive

• Regional activity and connectivity have 
an inverse relationship

• Nir et al.* also report decoherence 
during stimulus

12[Richiardi et al., Neuroimage, 2011] *[Nir et al., Neuroimage, 2006] 

• Data: 15 subjects, each in movie watching (14 min) and rest (8 min)

• Question: can we infer “brain state” (rest versus movie) across subjects?

• Results: yes, 80%-97% accuracy in CV in the low subbands

0.03-0.06 Hz
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2: dissimilarity embedding
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class 1 prototypes class 2 prototypes

d(g, p1) d(g, pn)

Embedding vector 

Principle

d(cij , c
�
ij) =

�
|β(i, j)− β�(i, j)| cij ∈ C, c�ij ∈ C �

K otherwise

d(g, p) =

|E|�

i=1

|E|�

j=i+1

d(cij , c
�
ij)

Edge label disssimilarity

Graph dissimilarity

ϕP
n (g) = (d(g, p1), . . . , d(g, pn)) ∈ Rn

based on [Riesen & Bunke, Int. J. Pat. Rec. Artif. Int. 2009] 
[Richiardi et al., ICPR 2010]

Fixed dissimilarity

Dissimilarity metric learning

and [Xing et al. NIPS 2002] 

d(g, p) = ||ag − ap||D =
�

(ag − ap)TD(ag − ap)

d(g, p) = 1
2 ||ag − ap||1 (if no missing edges)



Dissimilarity space
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3: Attributes of connectivity graphs
• Graphs G, H are isomorphic iff there exists 

a permutation matrix P s.t. 
• In our case (atlased connectivity graph):

• Hence connectivity graphs are isomorphic iff

• Graph invariant:  (set of) parameter(s) 
yielding the same value for isomorphic graphs
• To compare noisy connectivity graphs we are more 

interested in ε-isomorphism, and ε-invariants*

• Some invariants may degenerate depending on     : 
non-isomorphic graphs may have the same value

• We use several invariants to mitigate degeneracy**

17

P
�
= I

Eg = Eh and
∀i, j βg(vi, vj) = βh(vi, vj)

PAgP
T = Ah

*[Jain & Wysotzki, Neurocomputing, 2005]

|V|

** as in chemometrics: [Bonchev et al, J Comput Chemistry 1981]



Experiments
• Data: 26 subjects: 15 young (18-33, mean 24), 11 old 

(62-76, mean 67). 9.5 minutes resting-state, TR 1.1s.

• Question: Can we predict the age group of an unseen 
subject from graph/vertex properties of resting-state 
connectivity graphs?

• Results: only global and local efficiency are convincing 
(up to 89% accuracy). But on this dataset this works 
better than direct embedding.

18
[Richiardi et al.,  PRNI, 2011]

• Orbito-frontal cortex, 
amygdala, and 
parahippocampal 
formation are the most 
predictive regions (broadly 
agrees with previous 
studies*)

• In addition, the lingual 
gyrus shows age-related 
activation changes during 
memory tasks**
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(62-76, mean 67). 9.5 minutes resting-state, TR 1.1s.

• Question: Can we predict the age group of an unseen 
subject from graph/vertex properties of resting-state 
connectivity graphs?

• Results: only global and local efficiency are convincing 
(up to 89% accuracy). But on this dataset this works 
better than direct embedding.

18 **[Mencl et al., Micros Res. Tech., 2000][Richiardi et al.,  PRNI, 2011]

• Orbito-frontal cortex, 
amygdala, and 
parahippocampal 
formation are the most 
predictive regions (broadly 
agrees with previous 
studies*)

• In addition, the lingual 
gyrus shows age-related 
activation changes during 
memory tasks**

*[Achard & Bullmore, PLoS CompBiol, 2007]

subject

re
gi

on

 

 

5 10 15 20 25

10

20

30

40

50

60

70

80

90 0

0.2

0.4

0.6

0.8

1



Conclusion

19



Conclusion
• Whole-brain connectivity decoding is applicable to a 

range of cognitive and clinical neuroscience problems
• It can be used in a predictive setting

• We can trivially restrict analysis to small subnetworks (e.g. speech 
processing areas)

• We can visualise results both in terms of connections and in terms 
of regions

• In clinical applications, it is sensitive to gray matter, white matter, and 
small-vessel damage, and is complementary to VBM and TBSS-style 
analysis
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Conclusion
• Whole-brain connectivity decoding is applicable to a 

range of cognitive and clinical neuroscience problems
• It can be used in a predictive setting

• We can trivially restrict analysis to small subnetworks (e.g. speech 
processing areas)

• We can visualise results both in terms of connections and in terms 
of regions

• In clinical applications, it is sensitive to gray matter, white matter, and 
small-vessel damage, and is complementary to VBM and TBSS-style 
analysis

• Of course there is still much work to do: physiological 
noise, modelling, and interpretation (where do LF 
oscillations come from, what are they useful for?) are 
currently weak points.
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