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OVERVIEW

• Review of standard Bayesian analysis method (cosmologicial case-study)

• Fast likelihood evaluation: neural networks

• Fast and reliable parameter estimation and model selection: nested sampling

• The future: BAMBI

• Conclusions
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BASICS OF BAYESIAN DATA ANALYSIS

• Collect a set of N data points Di (i = 1,2, . . . , N), which we denote collectively as
the data vector D .

• Propose some model (or hypothesis) H for the data, depending on a set of M
parameters θj (j = 1, . . . ,M), that we denote by the parameter vector θ.

• Apply Bayes’ theorem

Pr(θ|D , H) =
Pr(D |θ, H) Pr(θ|H)

Pr(D |H)
→ P (θ) =

L(θ)π(θ)

E

• Parameter estimation: posterior P (θ) is complete inference

• Model selection: for Hi (i = 0,1), the probability density associated with D is

Ei =
∫
Li(θ)πi(θ) dθ

then consider ratio
Pr(H1|d)

Pr(H0|d)
=
E1

E0

Pr(H1)

Pr(H0)
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COSMOLOGICAL CASE-STUDY: CMB ANISOTROPIES

• Prior to recombination at t ∼ 300 000 yrs (or z ≈ 1100) plasma and photons tightly
coupled and transition to freely propagating photons occured quickly
⇒ CMB is snapshot of primordial density fluctuations in matter at this epoch

• These density fluctuations are of great interest for two reasons.

(i) These fluctuations later collapse under gravity to form all structure in the Universe

(ii) In the inflationary model, the form of these primordial density fluctuations are a
powerful probe of the physics of the very early Universe
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BAYESIAN STATISTICS AND COSMOLOGY

• Most obvious example: standard CMB data analysis pipeline
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• But many others: signal enhancement, signal separation, object detection, . . .
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PROBLEMS WITH STANDARD APPROACH

• Slow likelihood evaluation

– C` prediction (CAMB): ∼ 10 secs for flat model, ∼ 50 secs for non-flat model

– Likelihood function for some CMB slow: WMAP3 ∼ 60 secs, WMAP5 ∼ 10 secs

– Likelihood function slow for some complementary datasets: 2dF, SDSS, . . .

• Slow exploration of parameter space

– Cosmological parameter estimation typically requires ∼ 105 MCMC samples

⇒ Full analysis requires ∼ 30 days CPU time (excluding C` estimation)

⇒ Perform analysis in ∼ 1− 4 days on COSMOS supercomputer depending on
NCPU available (×2− 3 for ‘naughty user ranking’, queues, etc. . . )

• AND. . . × ∼ 10 for cosmological model selection using MCMC thermodynamic
integration
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PROBLEMS WITH STANDARD APPROACH

• Incomplete exploration of parameter space
Likelihood function of some models is complex and multimodal with narrow ridges
⇒ exploration with conventional MCMC methods challenging
⇒ low sampling efficiency and potentially incomplete exploration
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1: Neural networks: fast likelihood
evaluation
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MULTI-LAYER PERCEPTRON NEURAL NETWORKS

• MLP = feed-forward network composed of ordered layers of perceptrons

• Consider 3-layer MLP here: input layer, hidden layer and output layer

hidden layer: hj = g(1)(f(1)
j ); f

(1)
j =

∑
l

w
(1)
jl xl + b

(1)
j ,

output layer: yi = g(2)(f(2)
i ); f

(2)
i =

∑
l

w
(2)
ij hj + b

(2)
i ,

• Use non-linear activation function (g1(x) = tanhx) on outputs of all hidden layer
neurons; use g2(x) = x

• Any L2-function f : <n → <m, can be approximated to arbitrary mean square
error accuracy by a 3-layer MLP
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NEURAL NETWORK APPROACH TO COSMOLOGY

• Any analysis must relate model parameters Θ to observable quantities, such as
power spectra or likelihoods directly. Can view e.g. CAMB simply as a mapping
Θ→ C` and engineer a computationally efficient representation of this function

• Neural networks easy: random training data, scales linearly with dimension
⇒ train regression neural network to ‘learn cosmology’

• Train separate networks outputting CTT
` , CTE

` , CEE
` , CBB

` + matter power
transfer function T (k) + WMAP, 2dF, SDSS likelihoods
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COSMOLOGICAL MODEL ‘LEARNED’

• 7 parameter non-Flat ΛCDM model: {Ωk,Ωbh
2,Ωch2, θ, τ, As, ns}

• Parameter ranges: 8σ box around WMAP + SDSS + 2dF best-fit point

• Network(s) outputs: CTT,TE,EEl , T (k), WMAP, 2dF, SDSS likelihoods 11



NEURAL NETWORK TRAINING

• Training data: D = (xk, tk)
– randomly select ∼ 1000s points in box in cosmological parameter space: xk

– calculate C` and T (k) spectra using CAMB (at fixed ` and k values)
– calculate likelihoods using WMAP, 2dF, SDSS codes

• Minimise χ2 with respect to network parameters a = (w , b):

χ2(a) = 1
2

∑
k

∑
i

[
t
(k)
i − yi(x (k);a)

]2

• Highly non-linear function in 1000s of dimensions⇒ use MEMSYS optimiser on:

F (a) = −χ2(a) + αS(a)

• Increments α down the maximum entropy trajectory (starting from α =∞) until the
error term dominates; trains in ∼ 10 mins with 50 hidden nodes (max evidence)

• Create separate test data to evaluate accuracy

12



NN RESULTS: SPECTRA ACCURACY AND SPEED

• C` and T (k) accuracy in cosmic variance units (correlation on test data = 0.99998):

• CosmoNet speed of C` spectra generation ∼ 104 times faster than CAMB
13



NN RESULTS: LIKELIHOODS ACCURACY AND SPEED

• Likelihood accuracy (correlation on test data > 0.999999)

• CosmoNet likelihood evaluation ∼ 103 times faster than WMAP code
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COSMOLOGICAL PARAMETER CONSTRAINTS USING SPECTRA

• Standard method versus CosmoNet spectra→ standard likelihood codes:

• Posteriors differ by less than inter-chain variance (20,000 samples in total)

• Standard method: ∼ 300 CPU hrs (CosmoMC)
CosmoNet spectra + standard likelihoods: ∼ 30 CPU hrs (CosmoMC)
CosmoNet spectra + standard likelihoods: ∼ 3 CPU hrs (MultiNest – see later!)

• Note: WMAP likelihood code is bottleneck (other experiment likelihoods fast) 15



COSMOLOGICAL PARAMETER CONSTRAINTS USING LIKELIHOODS

• Standard method versus CosmoNet likelihoods:

• Posteriors differ by less than inter-chain variance (20,000 samples in total)

• Standard method: ∼ 300 CPU hrs (CosmoMC)
CosmoNet likelihoods: ∼ 2 CPU hrs (CosmoMC);
CosmoNet likelihoods: ∼ 10 CPU mins (MultiNest – see later!)
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INCREASING NETWORK ACCURACY FOR EVIDENCE CALCULATION

• BUT for model selection, require likelihood evaluations to greater accuracy than
needed for parameter estimation, since tails of distribution are important

• Attaining sufficient accuracy in network hindered by wide variation in WMAP
log-likelihood, ranging over several thousand units from peak to edge of prior
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INCREASING NETWORK ACCURACY FOR EVIDENCE CALCULATION

• Transform lnL values to linear scale [0→ 1]
⇒ improve accuracy in wings (∼ few log units)

• Include ∼ 50% posterior samples in training data
⇒ improve accuracy near peak (∼ 0.01 log units)

⇒ Network evidence estimates indistinguishable from those using CAMB

⇒ For cosmological model (using MCMC thermodynamic integration):
Standard+CosmoMC E = 5636.6± 0.2 in ∼ 2500 CPU hrs (CosmoMC)
CosmoNet+CosmoMC E = 5636.6± 0.2 in ∼ 20 CPU hrs (CosmoMC)
CosmoNet+MultiNest E = 5636.6± 0.2 in ∼ 10 CPU mins (MultiNest) 18



2: Nested sampling: fast and reliable
parameter estimation and model selection
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SOME COSMOLOGICAL POSTERIORS

• Some cosmological posteriors are nice, others are nasty
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ΛCDM: θ = (ωb, ωc, θ, τ, lnA,ns)

using CMB+SDSS+HST data
(Trotta 2004)

Detecting SZ clusters in CMB:
θ = (X,Y,A,R)

(Hobson & McLachlan 2003)

• Posterior exploration (parameter estimation) and integration (model selection)
traditionally performed using MCMC sampling
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METROPOLIS–HASTINGS ALGORITHM

x(1)Q(x;x(1)) P �(x)
L� • Metropolis–Hastings algorithm to sample P (θ):

– start at arbitrary point θ0

– at each step draw trial point θ′ ← Q(θ′|θn) from
proposal distribution

– calculate ratio r = P (θ′)Q(θn|θ′)/P (θn)Q(θ′|θn)

– if r ≥ 1 accept θn+1 = θ′;
if r < 1 accept with probability r, else θn+1 = θn

• Implementation of basic MH algorithm is trivial:

Initialise θ0; set n = 0
Repeat [

Sample a point θ′ from Q(·|θn)
Sample a uniform [0,1] random variable U
If U ≤ α(θ′, θn) set θn+1 = θ′, else θn+1 = θn
Increment n]

• After initial burn-in period, any (positive) proposal Q⇒ convergence to P (θ)

• Common choice for Q is multivariate Gaussian centred on θn (CosmoMC)
21



METROPOLIS–HASTINGS ALGORITHM: SOME PROBLEMS

x(1)Q(x;x(1)) P �(x)
L�

• But. . . choice of Q strongly affects rate of conver-
gence and sampling efficiency.
• Large proposal width ε⇒ trial points rarely accepted
• Small proposal width ε⇒ chain explores P (θ) by a

random walk – very slow
• If largest scale of P (θ) is L
⇒ typical diffusion time t ∼ (L/ε)2

• If smallest scale of P (θ) is `
⇒ need ε ∼ `⇒ diffusion time t ∼ (L/`)2

Q

P • Particularly bad for multimodal distributions
• Transitions between distant modes very rare
• No choice of proposal width ε works
• Standard convergence tests will suggest converged,

but actually only true in a subset of modes
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METROPOLIS–HASTINGS ALGORITHM: SOME PARTIAL FIXES

• Set proposal width ε by trial and error to achieve acceptance ratio ∼ 0.5, or
dynamically during burn-in, but must fix thereafter

• Multiple (non-interacting) chains sometimes useful

• Annealing schedules or multi-temperature chains

• Several sequential proposals: each updating only some parameters

• Innovative proposals, e.g Gibbs, Hamiltonian, slice sampling, genetic algorithms, . . .

• Compound proposal: multiple proposals Qi each chosen at random with probability pi

• Use of multiple interacting chains, e.g.

θp

θ n

θ’

leapfrog

θ′ = 2θp − θn

θ n

θ’

θp

θp’

cross-walk

θ′ = θp + θp′ − θn

θp

θp’
θ n

θ’

guided-walk

θ′ = θn + (θp − θp′)
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NESTED SAMPLING

• New technique for efficient evidence evalua-
tion (and posterior samples) (Skilling 2004)

• Define X(λ) =
∫
L(θ)>λ

π(θ) dθ

• Write inverse L(X), i.e. L(X(λ)) = λ

• Evidence becomes one-dimensional integral

E =
∫
L(θ)π(θ) dθ =

∫ 1

0
L(X) dX

• Suppose can evaluate Lj = L(Xj) where
0 < Xm < · · · < X2 < X1 < 1

⇒ estimate E by any numerical method

E =
m∑
j=1

Ljwj

(wj = 1
2(Xj−1 −Xj+1) for trapezium rule)
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Nested sampling approach to summation:
1. Set i = 0; initially X0 = 1, E = 0

2. Sample N points {θj} randomly from π(θ)

and calculate their likelihoods

3. Set i→ i+ 1

4. Find point with lowest likelihood value (Li)

5. Remaining prior volumeXi = tiXi−1 where
Pr(ti|N) = NtN−1

i ;
or just use 〈ti〉 = N/(N + 1)

6. Increment evidence E → E + Liwi

7. Remove lowest point from active set

8. Replace with new point sampled from π(θ)

within hard-edged region L(θ) > Li

9. If LmaxXi < αE (where some tolerance)

⇒ E → E +Xi
∑N
j=1L(θj)/N ; stop

else goto 3
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• Advantages:
– typically requires around few 100 times fewer samples than thermodynamic

integration to calculate evidence to same accuracy (plus error estimate)

– does not get stuck at phase changes like thermodynamic integration

log X

log L
Anneal

log X

B

C

D

E
F

A

slope=−1

(b)(a)

log L
• As λ : 0→ 1 annealing should
track along curve

• But d logL
d logX = −1

λ, so annealing
schedule cannot navigate
convex regions (phase changes)

• Bonus: posterior samples easily obtained as
a by-product. Simply take full sequence of
sampled points θj and weight jth sample by
pj = Ljwj/E, e.g.

µQ =
∑
j

pjQ(θj),

σ2
Q =

∑
j

(pjQ(θj)− µQ)2
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PRACTICAL CONSIDERATIONS

• Most challenging task: at each iteration i must replace removed point with one
sampled from π(θ) within complicated, hard-edged region L(θ) > Li

• Simple MCMC using Metropolis–Hastings possible, but can be inefficient

• Mukherjee et al. (2005) fit ellipsoid to active points, enlarge to try to account for
non-ellipsoidal likelihood contour, and sample within it using simple, exact method

• Demonstrated high-efficiency and robustness on simple unimodal cosmological
posteriors (∼ 100 times faster evidence evaluation cf. thermodynamic integration)

• But. . . still problematic for multimodal/ degenerate posteriors 27



Problem with elliptical region sampling (N = 20):

28



Problem with elliptical region sampling (N = 20):
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Problem with elliptical region sampling (N = 20):
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Problem with elliptical region sampling (N = 20):
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Problem with elliptical region sampling (N = 20):
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MULTIMODAL NESTED SAMPLING – MULTINEST

• Introduced by Feroz & MPH (2008), refined by Feroz, MPH & Bridges (2008)

• At each nested sampling iteration i:
– construct optimal multi-ellipsoidal bound for each cluster (variable ellipsoid number),

or evolve existing decomposition via scaling (fast)
– determine ellipsoid overlaps using cheap exact algorithm (Alfano et al. 2003)
– remove point with lowest Li from active points; increment evidence
– pick ellipsoid randomly and sample new point with L > Li, accounting for overlaps

• MULTINEST algorithm usefully (and easily) parallelized
33



IDENTIFICATION OF POSTERIOR MODES

• For multimodal posteriors, useful to identify which samples ‘belong’ to which mode

• For well-defined ‘isolated’ modes:
– can make reasonable estimate of posterior mass each contains (‘local’ evidence)
– can construct posterior parameter constraints associated with each mode

• Partitioning and ellipsoids construction algorithm described above provides
efficient and reliable method for performing mode identification
⇒ ‘local’ evidence and parameter constraints for each isolated mode
⇒ sum of local evidences equals ‘global’ evidence
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TOY PROBLEM: EGG-BOX LIKELIHOOD

• Likelihood resembles egg-box and is given by

L(θ1, θ2) = exp
[
2 + cos

(
θ1

2

)
cos

(
θ2

2

)]5
,

and prior is U(0,10π) for both θ1 and θ2.

• Use 2000 active points⇒∼ 30,000 likelihood evaluations to obtain
logZ = 235.86± 0.06 (analytical logZ = 235.88)
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TOY PROBLEM: MULTIPLE GAUSSIAN LIKELIHOOD

• Likelihood = five 2-D Gaussians of varying widths and amplitudes; prior = uniform

• Analytic evidence integral logE = −5.27

• MULTINEST: logE = −5.33± 0.11, Nlike ≈ 104

• Thermodynamic integration (+ error): logE = −5.24± 0.12, Nlike ≈ 4× 106

• Typical of real applications (see later): ∼ 500× efficiency of standard MCMC
36



TOY PROBLEM: MULTIPLE GAUSSIAN SHELLS

• Likelihood defined as

L(x) = circ(x ; c1, r1, w1) + circ(x ; c2, r2, w2),

where

circ(x ; c, r, w) =
1√

2πw2
exp

[
−

(|x − c| − r)2

2w2

]
.

and assuming a uniform prior
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• MULTINEST results:

MULTINEST
D Nlike Efficiency
2 7,370 70.77%
5 17,967 51.02%

10 52,901 34.28%
20 255,092 15.49%
30 753,789 8.39%

Analytical MULTINEST
D log(Z) local log(Z) log(Z) local log(Z1) local log(Z2)
2 −1.75 −2.44 −1.72± 0.05 −2.28± 0.08 −2.56± 0.08
5 −5.67 −6.36 −5.75± 0.08 −6.34± 0.10 −6.57± 0.11

10 −14.59 −15.28 −14.69± 0.12 −15.41± 0.15 −15.36± 0.15
20 −36.09 −36.78 −35.93± 0.19 −37.13± 0.23 −36.28± 0.22
30 −60.13 −60.82 −59.94± 0.24 −60.70± 0.30 −60.57± 0.32

• Bank sampler (MCMC): Nlike ∼ 106 in D = 2 for parameter estimation alone
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APPLICATIONS OF MULTINEST: TOY MODEL

• Toy model: Gaussian objects in noise (Feroz & MPH, arXiv:0704.3704)

• Multinest: Nlike ∼ 104, run time ∼ 2 CPU mins – identified all objects correctly

• BayeSys (MCMC + thermo. int.): Nlike ∼ 5× 106, run time ∼ 16 CPU hrs
Required several object subtraction iterations to identify all objects

39



APPLICATIONS OF MULTINEST: TEXTURES IN CMB

• Textures in CMB data (in preparation)
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APPLICATIONS OF MULTINEST: CLUSTERS IN SZ

• Cluster (and point sources) in interferometric SZ data (Feroz et al., arXiv:0811.1199)

• Simulations: A (left) without cluster and B (right) with cluster (β-model),
including CMB, 3 point sources, confusion noise, instrumental noise

• A simulation R = 0.35± 0.05; B simulation R ∼ 1033. Parameter constraints:
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APPLICATIONS OF MULTINEST: CLUSTERS IN LENSING

• Clusters in weak lensing surveys (Feroz, Marshall, MPH, arXiv:0810.0781)

• 0.5× 0.5 deg2 simulation (ΛCDM + Press–Schechter), 100 gal arcmin−2, σ = 0.3

• Probability ith mode is true positive pi = Ri/(1 +Ri)⇒ n̂FP =
∑N

i=1
pi>pth

(1− pi)
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APPLICATIONS OF MULTINEST: GRAVITATIONAL WAVES

• Simulated LISA data containing two signals from non-spinning SMBH mergers.
Each source has antipodal degeneracy⇒ at least 4 modes in posterior

• All identified and well characterized in ∼ 2 CPU hrs (Feroz et al., arXiv:0904.1544)

• Also applied successfully in Mock LISA Data Challenge Round 3 to simulations of 5
spinning BH binary inspirals and 3 cosmic strings (Feroz et al. arXiv:0911.0288)43



BEYOND ASTRONOMY: MULTINEST IN PARTICLE PHYSICS

• SUSY phenomenology: MultiNest applied to cMSSM and pMSSM by us
(see arXiv:0807.4512, arXiv:0809.3792, arXiv:0903.2487, arXiv0904.2548,
arXiv0906.0957, arXiv:1101.3296) + and by others

• In all cases, MULTINEST is few× 100 more efficient than MCMC
44



BEYOND ASTRONOMY: NN AND MULTINEST IN PARTICLE PHYSICS

• Recently applied NN to Constrained MSSM (Bridges et al. – arXiv:1011.4306)

• SOFTSUSY: theory parameters θ→ sparticle mass spectrum m by computationally
expensive evolution of renormalisation group equations⇒ replace with NN

• Also built classification NN to partition θ-space into physical and unphysical regions

• Speeds up analysis by factor ∼ 104 (MULTINEST provides further factor of ∼ 100)
⇒ original SOFTSUSY + MCMC = 720 CPU days; NN + MULTINEST = 1 minute
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4: The future: BAMBI. . .
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BLIND ACCELERATED MUTLIMODAL BAYESIAN INFERENCE (BAMBI)

• General Bayesian inference engine with wide applicability: only requires choice of
priors on the parameters in model

• Combines neural networks and nested sampling in complementary manner

• Basic idea is as follows:

– early stage (prior-driven) nested samples⇒ (incremental) training data set

– simultaneous training of neural network⇒ ‘learn’ likelihood function

– clustering in nested sampler⇒ accelerates network training

– once trained, network replaces likelihood code
⇒ completes posterior sampling and evidence evaluation extremely rapidly

– trained likelihood network available for subsequent analyses
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CONCLUSIONS

• Standard Bayesian analysis can be very computationally intensive: days–weeks on
a supercomputer

• Large speed-ups possible using neural networks for model prediction

• Efficient and robust evidence evaluation and parameter estimation provided by
nested sampling
– MULTINEST allows sampling from multimodal/degenerate posteriors
– local and global evidences and parameter constraints
– typically few× 100 times more efficient than standard MCMC

• These methods should be useful in a wide range of physical inference problems;
already applied in many areas

• COSMONET and MULTINEST code publically available from:
www.mrao.cam.ac.uk/software/cosmonet
www.mrao.cam.ac.uk/software/multinest

• BAMBI in development. . . 48



Supplementary slides
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ADVANTAGES OF COSMONET

• Simplicity: provides single, simple, closed-form function for each interpolation over
entire parameter space

• Memory usage: a network with Ni input nodes, Nh hidden nodes and No output
nodes has (Ni + 1)Nh + (Nh + 1)No ≈ NhNo parameters. For above model,
requires only ∼ 50 kB of parameter memory

• Accuracy: excellent after only ∼ few mins of training on single 2GHz CPU

• Speed: number of calculations to perform feed-forward network mapping is
2Ni Nh + 2NhNo ≈ 2NhNo . In above example, calculation of C` spectrum in ∼
20 microseconds, and WMAP likelihood in ∼ 5 microseconds

• Scaling: Nh increases at worst linearly with Ni
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TRAINING DATA: C` SPECTRA

• CAMB generates C` spectra at a specified set (∼ 50) of `-values
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TRAINING DATA: C` SPECTRA

• Cubic spline interpolation used to create full set of C` values
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QUANTITY OF TRAINING DATA

• Use few 1000 training data: more data simply slow training

• But can obtain usable results using few 100
53



NETWORK COMPLEXITY

• For cosmological application found optimum number of hidden nodes ∼ 50

• Spectra with more structure would simply require more nodes

• Can find optimal number of hidden nodes by maximising evidence
54



UNIT HYPERCUBE SAMPLING SPACE

• Algorithm for partitioning active points into clusters and constructing ellipsoidal
bounds requires uniformly distributed points

• MULTINEST ‘native’ space = D-dimensional unit hypercube in which samples are
drawn uniformly. All operations are carried out in this space (cf. BAYESYS).

• To conserve probability mass, point u = (u1, u2, · · · , uD) in unit hypercube
transformed point Θ = (θ1, θ2, · · · , θD) in ‘physical’ parameter space, such that∫

π(θ1, θ2, · · · , θD) dθ1 dθ2 · · · dθD =
∫
du1du2 · · · duD

• In simple case that prior separable: π(Θ) = π1(θ1)π2(θ2) · · ·πD(θD), set
πj(θj)dθj = duj ⇒ for given uj, find θj by solving

uj =
∫ θj
−∞

πj(θ
′
j)dθ

′
j

55



• If prior π(Θ) not separable, instead write

π(θ1, θ2, · · · , θD) = π1(θ1)π2(θ2|θ1) · · ·πD(θD|θ1, θ2 · · · θD−1)

where

πj(θj|θ1, · · · , θj−1) =
∫
π(θ1, · · · , θj−1, θj, θj+1, · · · , θD) dθj+1 · · · dθD

• Physical point Θ corresponding to point u in unit hypercube then found by using
this πj in earlier expression

• Physical parameters Θ used to calculate likelihood of point u
For many problems, prior π(Θ) is uniform⇒ u and Θ-spaces coincide
For many other problems, prior π(Θ) allows one to solve for Θ point analytically

• In all cases, can solve for Θ point numerically

• Alternatively. . . re-cast inference problem: for example, define new ‘likelihood’
L′(Θ) ≡ L(Θ)π(Θ) and ‘prior’ π′(Θ) ≡ constant. But potentially inefficient since
lacks true prior π(Θ) to guide the sampling of active points
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PARTITIONING OF POINTS AND CONSTRUCTION OF ELLIPSOIDAL BOUNDS

• At ith NS iteration, find ‘optimal’ ellipsoidal decomposition of N active points
distributed uniformly in remaining prior volume Xi using EM approach

• Let set of N active points in unit hypercube be S = {u1,u2, · · · ,uN} and some
partitioning into K clusters be {Sk}Kk=1, where K ≥ 1 and ∪Kk=1Sk = S.

• For cluster (or subset) Sk containing nk points, define quasi-minimum-volume
bounding ellipsoid

Ek = {u ∈ RD|uT(fkCk)−1u ≤ 1},
where the empirical covariance matrix of the subset is

Ck =
1

nk

nk∑
j=1

(uj −muk)(uj −muk)T

and muk =
∑nk
j=1 uj is its center of the mass. Enlargement factor fk ensures Ek

is a bounding ellipsoid. Note: volume of ellipsoid V (Ek) ∝
√

det(fkCk)
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• At ith NS iteration, volume V (S) from which set S uniformly sampled is unknown
remaining prior volume Xi, but use expectation value V (S) = exp(−i/N)

• Define objective function

F (S) ≡
1

V (S)

K∑
k=1

V (Ek)

and minimise F (S), subject to the constraint F (S) ≥ 1, wrt K-partitionings
{Sk}Kk=1⇒ ‘optimal’ decomposition of original sampled region into K ellipsoids

• Minimisation most easily performed using EM scheme, using result (Lu et al. 2007)
that, change in F (S) resulting from reassigning a point u from subset Sk to Sk′ is

∆F (S)k,k′ ≈ γ
(
V (Ek′)d(u , Sk′)

V (Sk′)
−
V (Ek)d(u , Sk)

V (Sk)

)
where γ is a constant,

d(u , Sk) = (u −muk)T(fkCk)−1(u −muk)

is ‘distance’ from u to centroid muk of ellipsoid Ek, and

V (Sk) =
nkV (S)

N
may be considered the volume from which subset Sk was drawn uniformly
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• In fact, impose further constraint that V (Ek) > V (Sk). Easily achieved by
enlarging ellipsoid Ek by factor fk, such that V (Ek) = max[V (Ek), V (Sk)],
before evaluating F (S) and ∆F (S)k,k′

• Minimising F (S) equivalent to defining

hk(u) =
V (Ek)d(u , Sk)

V (Sk)

and, for all points u ∈ S, assigning u ∈ Sk to Sk′ only if hk(u) < hk′(u), ∀ k 6= k′,
and repeating until convergence is achieved

• To find optimal number of ellipsoids, K, use recursive scheme:
– start by performing k-means partition with K = 2

– optimise this 2-partition as outlined above,
– recursively partition and optimise the resulting clusters
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ELLIPSOIDAL DECOMPOSITION ALGORITHM

1000 points drawn from two ellipsoids

1000 points drawn from a torus

1. For S, calculate bounding ellipsoid E and V (E)

2. Enlarge E so that V (E) = max[V (E), V (S)]

3. Partition S into S1 and S2 containing n1 and n2

points using k−means with K = 2

4. Calculate E1, E2 and volumes V (E1), V (E2)

5. Enlarge Ek (k = 1,2) so that V (Ek) =
max[V (Ek), V (Sk)].

6. For all u ∈ S, assign u to Sk such that hk(u) =
min[h1(x), h2(x)]

7. If no point reassigned goto 8; else goto 4

8. If V (E1) + V (E2) < V (E) or V (E) > 2V (S)
– partition S into S1 and S2

– repeat entire algortihm for each subset S1 and S2

else
– return E as the optimal ellipsoid of the point set S
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• EM algorithm quite computationally expensive, especially in high dimensions

• But. . . MULTINEST need not perform full partitioning at each NS iteration

• Ellipsoids can be evolved through scaling at subsequent NS iterations i+ i′ such
that V (Ek) = max[V (Ek), Xi+i′nk/N ]

• Ellipsoidal decomposition calculated at iteration i becomes less optimal as i′ grows
⇒ perform full re-partitioning of active points if F (S) ≥ h (typically h = 1.1)

• Possible that ellipsoids might not enclose the entire iso-likelihood contour, even
though sum of their volumes must exceed prior volume X ⇒ safer to set desired
minimum volume as eX, where e is an enlargement factor

• Note: regardless of e-value, always ensure that Ek is a bounding ellipsoid of
subset Sk.
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SAMPLING FROM OVERLAPPING ELLIPSOIDS

• At each NS iteration, need to draw a new point uniformly from union of ellipsoids

• k Suppose K ellipsoids {Ek}, where kth one has volume V (Ek)

• Choose one ellipsoid with probability pk = Vk/Vtot

• Sample from chosen ellipsoid within hard constraint L > Li

• Find number ne of ellipsoids in which sample lies; accept with probability 1/ne
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TRIVIAL PARALLELIZATION

• Typical sampling efficiency less than unity since
– ellipsoidal approximation to iso-likelihood surface not perfect
– ellipsoids may overlap (as discussed above)

• But. . . MULTINEST algorithm usefully (and easily) parallelized

• At each NS iteration, draw a potential replacement point on each of NCPU

processors, where 1/NCPU is an estimate of the sampling efficiency

⇒ Effective efficiency close to unity across NCPU
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IDENTIFICATION OF POSTERIOR MODES

• For multimodal posteriors, useful to identify which samples ‘belong’ to which mode

• Some arbitrariness in this process: modes sit on top of some general ‘background’
of probability distribution

• Moreover, modes lying close together may only ‘separate out’ at relatively high
likelihood levels
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• Nonetheless, for well-defined ‘isolated’ modes:
– can make reasonable estimate of posterior mass each contains (‘local’ evidence)
– can construct posterior parameter constraints associated with each mode

• Once NS process reached likelihood such that ‘footprint’ of mode well-defined⇒
identify at each subsequent iteration the points in active set belonging to mode

• Partitioning and ellipsoids construction algorithm described above provides
efficient and reliable method for performing this identification
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MODE IDENTIFICATION ALGORITHM

1. In first NS iteration, assign all active points to active group G1

2. In subsequent NS iterations, pick subset Sk of G1 at random:
– Sk points become first members of ‘temporary set’ T
– Ek becomes first member of ‘ellipsoid set’ E

3. For all Ek′ /∈ E , determine if Ek′ intersects any ellipsoid in E

4. If no such intersections occur:
– goto 5
else, for each such intersecting ellipsoid Ek′:
– add Sk′ points to T and add Ek′ to E
– goto 3

5. If all ellipsoids are members of E :
– (re)assign points in T to G1

else
– (re)assign points in T to new active group G2

– (re)assign remaining active points to new active group G3

– group G1 becomes ‘inactive’

6. In current NS iteration, goto 2 and repeat algorithm for each
active group until no new active groups occur

7. In subsequent NS iterations, apply algorithm to each active
group
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• At end of NS process⇒ set of inactive groups and set of active groups, which
together partition the full set of (inactive and active) sample points generated

• Note: as NS process reaches higher likelihoods, number of active points in any
particular active group may dwindle to zero, but. . . group still considered active
since it remains unsplit at the end of NS run.

• Finally, each active group is promoted to a ‘mode’, resulting in a set of L (say) such
modes {Ml}.
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EVALUATION OF LOCAL EVIDENCES

• Suppose lth mode Ml contains the points {uj} (j = 1, nl)

• In simplest approach, local evidence of mode is

Zl =
nl∑
j=1

Ljwj

where wj = XM/N for each active point in Ml and wj = 1
2(Xi−1 −Xi+1) for

each inactive point (i is NS iteration when inactive point was discarded).
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• Similarly, posterior inferences resulting from lth mode obtained by weighting each
point in Ml by pj = Ljwj/Zl.

• But. . . local evidence underestimated for modes lying close together – only
identified as separate regions at high likelihood values

• Overcome problem by also making use of points in the inactive groups at end of
NS process
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• For each mode Ml, expression local evidence now reads

Zl =
nl∑
j=1

Ljwj +
∑
g
Lgwgα(l)

g ,

where sum over g includes all points in inactive groups, wg = 1
2(Xi−1 −Xi+1) as

above, and additional factors α(l)
g are calculated as set out below.

• Similarly, posterior inferences from lth mode obtained by weighting each point in
Ml by pj = Ljwj/Zl and each point in inactive groups by pg = Lgwgα(l)

g /Zl

• Factors α(l)
g most easily determined by essentially reversing the mode

identification process

• Each mode Ml is simply a renamned active group G

• Identify inactive group G′ that split to form G at the NS iteration i
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• Assign all points in G′ the factor

α
(l)
g =

n
(A)
G (i)

n
(A)
G′ (i)

,

where n(A)
G (i) is number of active points in G at NS iteration i; similar for n(A)

G′ (i).

• Now, G′ may itself have formed when an inactive group G′′ split at an eariler NS
iteration i′ < i, in which case all points in G′′ are assigned the factor

α
(l)
g =

n
(A)
G (i)

n
(A)
G′ (i)

n
(A)
G′ (i′)

n
(A)
G′′ (i′)

.

• Process is continued until the recursion terminates

• Finally, all points in inactive groups not already assigned have α(l)
g = 0.

• Easy to show
∑L
l=1Zl = Z, the global evidence⇒ evidence exactly partitioned

• Note: can instead use mixture model to assign factors


