

The applications of compressive sensing to radio astronomy

Feng Li, Post-Doc Fellow *Commonwealth Scientific and Industrial Research Organisation* BASP, September, 2011

Introduction of CS

 CS says that we can reconstruct a signal using far fewer measurements than required by the Nyquist sampling theory, provided that the signal is sparse or there is a sparse representation of the signal with a respective given basis function dictionary

CS vs Nyquist-Shannon sampling

Compressive sampling 2004

Nyquist-Shannon sampling 1950s

CS	NS
Indirect sampling	Direct sample
Nonuniform sampling Sparsity decides	Uniform sampling Maximum frequency decides
Reconstruction step required	No need reconstruction step

Outline

- Two investigated applications of compressive sensing/ sampling (CS) to radio astronomy:
 - Image Deconvolution
 - Faraday Rotation Measure Synthesis
- Conclusion

Australian Square Kilometer Array Pathfinder (ASKAP)

- 36 antennas (12m in diameter) in West Australia
- The smallest separation of 22m
- The longest baseline 6km
- 30 of them locating within a 2km radius
- 6 long baseline antennas to capture high frequency details

ASKAP UV coverage and its PSF

Isotropic Undecimated Wavelet Transform (IUWT)

- In the IUWT, the non-orthogonal Astro filter bank (the low pass filter: h1D= [1, 4, 6, 4, 1]/16, the high pass filter: g1D= δ h1D= [-1, -4, -10, -4, -1]/16) is adopted
- Many of sources in the universe are isotropic
- Advantage of IUWT is that we can use the low pass filter only for implementation

Image Deconvolution

- Multiplication (Fourier domain) = Convolution (spatial domain)
- Based on Van Citter-Zernike theorem

$$MFI = V$$

 Introduce a new image deconvolution method: Isotropic Undecimated Wavelet Transform (IUWT)-based CS method

$$\min \|\alpha\|_{l_1} \quad s.t. \|MFW^{-1}\alpha - V\|_{l_2} \le \epsilon. \qquad WI = \alpha$$

- Fast Iterative Shrinkage Thresholding Algorithm (FISTA) is used to solve the above problem
- Reweighted FISTA can improve the above results further!

Results

- Declination -45 degrees; Right ascension 12h30m00.00 (epoch J2000) image size 2048*2048;
- Frequency range: 700M-1GHz; 30 channels with 10MHz bandwidth; Integration time is 60 seconds; observing time is 1 hour. The system temperature is set to 50K in this test.

Results

Hogbom CLEAN

Multi-scale CLEAN

IUWT-based-CS

Results with the uniform weighting

Numerical comparison results

	Högbom	Multiscale	IUWT-based CS	
Uniform-weighted UV coverage				
DR	188	166	186	
FD	1.292	2.337	2.569	
CFD	1.001	1.014	1.035	
Time (min)	34	17	3	
DR - max(restored image)				
rms error				
$FD = median \left\{ \frac{true \ sky \ image \ image}{abs(model - true \ sky \ image)} \right\}$				
$CFD = median \left\{ \frac{clean beam * true sky image}{clean beam * abs(model - true sky image)} \right\}$				

Outline

- Two investigated applications of compressive sensing/ sampling (CS) to radio astronomy:
 - Image Deconvolution
 - Faraday Rotation Measure Synthesis
- Conclusion

The applications of CS to radio astronomy ---Faraday rotation measure synthesis

• A physical phenomenon:

The angle of linear polarization radiation which propagates through magnetic fields is rotated as a function of frequency

• Usage:

From Wikipedia

To study magnetic fields of galaxies

Faraday rotation measure synthesis

 Faraday dispersion function F(φ), which describes the intrinsic polarized flux per unit Faraday depth φ, and its relationship with the complex polarized emission P(λ²) as follows:

$$P(\lambda^2) = \int_{-\infty}^{\infty} F(\phi) \mathrm{e}^{2\mathrm{i}\phi\lambda^2} \,\mathrm{d}\phi$$

where λ is the wavelength. Note that, P can also be written as P = Q + iU, where Q and U represent the emission of Stokes Q and U, respectively

$$\phi(r) = 0.81 \int_{source}^{observor} n_e B dr$$

where B is the magnetic field strength in micro-Gauss; n_e is the electron density; r is the path length in parsecs

Faraday rotation measure synthesis

• Obviously, to reconstruct the Faraday dispersion function

$$F(\phi) = \frac{1}{\pi} \int_{-\infty}^{\infty} P(\lambda^2) e^{-2i\phi\lambda^2} d\lambda^2$$

- Problems:
 - Can not observe at wavelengths when $\lambda^2 < 0$
 - Nor do we observe at all wavelength when $\lambda^2 > 0$
- Expression in equation:

$$Yf = \widetilde{p}$$

 $Y(j, N/2 + k) = e^{2i\phi_k \lambda_j^2}, j = 1, \dots, m; k = 1 - N/2, \dots, N/2.$

Example

CSIRO. The applications of compressive sensing to radio astronomy

Our solutions

• Faraday thin sources: CS-RM-Thin

 $\min \{ \|\operatorname{Re}(\mathbf{f})\|_{l_1} + \|\operatorname{Im}(\mathbf{f})\|_{l_1} \} \quad s.t. \ \mathbf{Y}\mathbf{f} = \widetilde{\mathbf{p}},$

• Faraday thick sources: CS-RM-Thick

 $\min \{ \|\mathbf{W} \cdot \operatorname{Re}(\mathbf{f})\|_{l_1} + \|\mathbf{W} \cdot \operatorname{Im}(\mathbf{f})\|_{l_1} \} \quad s.t. \ \mathbf{Y}\mathbf{f} = \widetilde{\mathbf{p}}$

• Faraday mixed sources: CS-RM-Mix

 $\min \{ \|\operatorname{Re}(\mathbf{f}_{\operatorname{thin}})\|_{l_1} + \|\operatorname{Im}(\mathbf{f}_{\operatorname{thin}})\|_{l_1} + \|\operatorname{W} \cdot \operatorname{Re}(\mathbf{f}_{\operatorname{thick}})\|_{l_1} + \|\operatorname{W} \cdot \operatorname{Im}(\mathbf{f}_{\operatorname{thick}})\|_{l_1} \} \quad s.t. \ \mathrm{Y}\mathbf{f} = \widetilde{\mathbf{p}},$

Results for Faraday Thin sources

Results for Faraday thick sources

Results for Faraday mixed sources

Miscellaneous

- Acknowledgement to Jean-Luc Starck, Tim Cornwell and Frank de Hoog
- Publications
 - Feng Li, Tim Cornwell and Frank de Hoog, "The Application of Compressive Sampling to Radio Astronomy

I: Deconvolution", Astronomy & Astrophysics, Volume 528, 2011

- Feng Li, Shea Brown, Tim Cornwell and Frank de Hoog, "The Application of Compressive Sampling to Radio Astronomy II: Faraday Rotation Measure Synthesis", Accepted to *Astronomy & Astrophysics*
- Code can be found at http://code.google.com/p/csra

Conclusion

- Applying the CS reconstruction step to solve ill-conditioned problems in radio astronomy
- Two investigated applications to radio astronomy:
 - For image deconvolution given a radio telescope array
 - For Faraday rotation measure synthesis
- Detailed comparison can be found in our papers

Questions?

Contact Us

Thank you

Phone: 1300 363 400 or +61 3 9545 2176 Email: enquiries@csiro.au Web: www.csiro.au

ww.csiro.au