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Dataset
A dataset contains every things needed to make the raw observational data scien-
tifically useful (science archive, off-line data reduction and analysis)

1. Correlator data
(99% of the amount of data, simple compact structure)

2. Metadata

• target space parameters (astronomical positions: directions, spectral (line)
frequencies, ...)

• instrumental configurations used

• experimental procedures (observing modes)

• instrumental parameters used (antenna positions, pointing model used, ...)

• fine tuning data (quasi real time calibration results)

3. Auxiliary data

• encoder readouts (dish) / complex gains (aperture arrays), etc...

• experimental context (antenna-based monitoring points: temperature, pres-
sure, ... atmospheric radiometric data, ...)
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Motivations to have a Data Model

A measurement set is a set of concrete concepts at different levels,

a) words, e.g. physical quantities, measures (Universal Concepts),

b) compositions of words defining relations (Domain Specific Concepts).

Common language & understanding of concepts (interoperability).

a) expressiveness

b) robustness (type-safe)

c) efficiency (static typing, high performance calculi, ...)

(architecture: structure, factorization, localization, slicing, ... i.e. geometry),

The model must be as rich as needed within a context evolving to-

wards more and more automated processing (data volume, instru-

mental complexity, ...)
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From acquired Experiences to required Evolutions

Experiences:
The radioastronomy has accumulated knowledges and experiences for many years

Evolution from data formats to DMs
major step in 1995/2000 with MS (ref. Kemball et al.)

Broader usages:
a) for persistence (archives),
b) for off-line data processing (software packages, pipelined processing, ...)
c) for on-line data acquisition (near real time telescope calibration, quick look, ...)

NB: transporting data is time consuming → data flows must be well thought

Instrumental evolution: begs for DM evolutions.
Example: aperture arrays like EMBRACE (proto for SKA)

Facts: the mathematicians:
a) have developped all the abstract constructs useful to us
b) give a methodology to define data models & theories (ref. theory of categories)
NB:
a) formalism used in fundamental computer science.
b) matchs well with generic programming techniques.

5



6



What is a data model?

A model is the composition of

a structure (mathematical logic) with algebra.

Example: the relational data model.

• The semantic is captured through constraints.

• The structure gives the meaning of things in a formal language.

Datasets must conform to a model
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4 commutable triangles
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To use a language for representing measurements

Examples of words (physical quantities):

• Length, Area, Angle, Solid angle, Aperture efficiency, Rotation measure

• Speed

• Angular rate

• Noise equivalent power

• FluxDensity (Jy which is not SI...)

• ...

Note that:

1. All these have units.

2. Dimensioned, dimensionless and mixed case units!

3. They may have units which uses powers of rational numbers!

4. Physical expressions are composition of such words
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Measurements in context

We assign domain specific meaning to words:

• Station

• Antenna

• Spectral window

• Feed

• Configuration description

• ...

Meta-model → meta-model instance ← a DSL
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Formalization

• Category

• Functor

• Natural transform

• Product and coproduct:
example of diagrams, a cone (projections) and a cocone (inductions)

• Direct limit

• Monoids. 2-categories, ...

• Sketches, Models and Theories

11



12



13



Two examples at work
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From a set of monoids to the category PQ

the algebraic topology
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Proposition:

the product of a dimensionless quantity with its inverse is a pure number.
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From a set of monoids to the category PQ

Equation of the product: a diagram of PQ
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• A linearization on a language (functions basis)

• A coherence constraint (∃ validation)
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Logical structure of PQ

and its boundary
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Examples of constructions for the categories PQ and PM

units construction category

• m • �� direct

• rad •**TTTTTTTTTTTTTT

• ttjjjjjjjjjjjjjj

inductive PQ

• • rad/m ��•**TTTTTTTTTTTTTT

• ttjjjjjjjjjjjjjj

inductive ⊕ direct

• • rad± ε •**TTTTTTTTTTTTTT

• ttjjjjjjjjjjjjjj

•
ttjjjjjjjjjjjjjjj•

**TTTTTTTTTTTTTTT inductive ⊕ projective

• • m± ε • ��•
ttjjjjjjjjjjjjjjj•

**TTTTTTTTTTTTTTT direct ⊕ projective PM

• • • rad/m± ε •**TTTTTTTTTTTTTT

• ttjjjjjjjjjjjjjj

• ��•
ttjjjjjjjjjjjjjjj•

**TTTTTTTTTTTTTTT inductive ⊕ direct ⊕ projective
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Conclusions for the Physical Quantities

• PQ is a functor category, a singleton. It is a pure abstraction.

• PQ is the set all the physical expressions

• PQ is an endomorphism

• PQ is a monad PQ(PQ()) = PQ(); 1× PQ = PQ

• PQ is cartesian closed (eg PQuantity is embedded in R∗.)

• PQT is a monoid, a constructible functor with polymorphic representation
monomorphism: RanTPQ and its dual, LanTPQ, for polymorphism.

• PQT is a cartesian closed category whose objects are physical quantity states
and the morphisms tensor products.

• PQ has inductive cones
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Measurement Set Data Model

• Domain specific concepts are build on normalized relations
(→ keys)

• The measurement set is a set of concepts with relations between them

• Some concepts require objects defined recursively
(→ model not relational)

• Concepts which have contexts are topos:
(→ keys are ordered sequences of foreign keys)
(→ model not relational)

• The topology with 3 axes: aperture, frequency range and time range.
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Conclusions

1. The theory of the measurement set has been mostly developed

2. The standard relational model is only a sub-category

3. Tables are sets containing a subset of their powersets, allow recursive definitions

4. Tables are monoids for ]

5. The Datset is a monoid

1. The formalism allows to support complex instruments such as aperture phased
arrays

2. Generic programming in C++ allows to express this mathematical formalism:
propotype SDMv2
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