

Compressed Sensing for Rotation Measure Synthesis

Anna Scaife

BASP 2011, Villars-sur-Ollon

Dublin Institute for Advanced studies Institiúid Ard-Léinn Bhaile Átha Cliath

Faraday Rotation

CS for RM Synthesis

In general:

$$\phi \neq RM$$
, $RM = \frac{d\chi(\lambda^2)}{d\lambda^2}$ where $\chi = \frac{1}{2} \tan^{-1} \frac{U}{Q}$.

For the single source:

$$\chi(\lambda^2) = \chi_0 + \phi \lambda^2$$
, therefore $\frac{d\chi(\lambda^2)}{d\lambda^2} = \phi = RM$.

Multiple Faraday structures:

 $P(\lambda^2) = \int F(\phi) e^{2i\phi\lambda^2} d\phi$ (Burn 1966)

That single source again:

$$F(\phi) = \delta(\phi - \phi_0) \rightarrow P(\lambda^2) = e^{2i\phi_0\lambda^2} = \cos(2\phi_0\lambda^2) + i\sin(2\phi_0\lambda^2) = Q + iU$$

The Faraday dispersion function is a Fourier relationship:

 $P(\lambda^2) = \int F(\phi) e^{2i\phi\lambda^2} d\phi$ (Burn 1966)

$$F(\phi) = \int P(\lambda^2) e^{-2i\phi\lambda^2} d\phi$$

Similarly to the relationship between the *uv* and image planes in aperture synthesis it is not fully sampled:

$$P(\tilde{\lambda}^2) = W(\lambda^2)P(\lambda^2)$$

We get a response function similar to that of a PSF:

$$RMSF(\phi) = \frac{\int_{-\infty}^{\infty} W(\lambda^2) e^{-2i\phi\lambda^2} d\lambda^2}{\int_{-\infty}^{\infty} W(\lambda^2) d\lambda^2}$$

Brentjens & de Bruyn 2005

Resolution is a function of coverage in λ^2 : $\delta \phi \approx \frac{2\sqrt{3}}{\Delta \lambda^2}$ $\begin{array}{l} \text{Sensitivity to maximum scale in } \phi \text{ is a} \\ \text{function of resolution in } \lambda^2 \text{:} \\ ||\phi_{\max}|| \approx \frac{\sqrt{3}}{\delta\lambda^2} \end{array}$

RM Synthesis

- RMSF from 30-50 MHz + 60-80 MHz: $\delta \phi = 0.05 \text{ rad m}^{-2},$ $\phi_{\text{max}} = 19 \text{ rad m}^{-2}$
- RMSF from 120-150 MHz + 180-210 MHz: $\delta \phi = 1.0 \text{ rad m}^{-2}$, $\phi_{\text{max}} = 1200 \text{ rad m}^{-2}$

Heald 2009

7/38

9/38

.

LOFAR Early Results

CS for RM Synthesis

LOFAR Early Results

Andreas Horneffer

LOFAR Early Results

Andreas Horneffer

CS for RM Synthesis

RM Clean

RM Clean (Heald 2009)

Works in the same way as standard CLEAN Iterative subtraction of a δ -fnc scaled by a loop gain factor.

RM Clean

RM Clean (Heald 2009)

Works in the same way as standard CLEAN Iterative subtraction of a δ -fnc scaled by a loop gain factor.

CS for RM Synthesis

Marijke Haverkorn

Extended emission (Fan region)

WSRT

Extended emission (Fan region)

LOFAR: Marco Iacobelli & Marijke Haverkorn

RM Synthesis

Faraday spectra are **complex**: the modulus defines the emission and the phase the PA

$$P(\lambda^{2}) = \int \epsilon(z) e^{2i\chi(z)} e^{2i\phi(z)\lambda^{2}} dz$$
$$F(\phi) = \epsilon(\phi) e^{2i\chi(\phi)} \left(\frac{d\phi}{dz}\right)^{-1}$$

Standard RM Synthesis does not recover the complex components as there is no information at $\lambda^2 < 0$

Requires a degree of inference about the underlying signal distribution

Frick et al. 2010

RM Synthesis

Wavelet based RM Synthesis can recover real and imaginary parts of $F(\phi)$ more accurately

Requires a degree of inference about the underlying signal distribution \rightarrow symmetry of dispersion function

Frick et al. 2010

CS for Faraday Thin Sources

Li et al. 2011

Faraday Caustics

(Bell, Enßlin & Junklewitz 2011)

Caused by reversals of the B-field along the l.o.s.

Leads to Heaviside functions in the Faraday dispersion spectrum

(Waelkens+ 2009)

Sparsity of Faraday Caustics

Statistical TV norm (STV $_{\epsilon}$):

CS for RM Synthesis 36 / 38

Variation with Galactic Co-ords

 $b = 40^{\circ}$

CS for RM Synthesis

- The RM-Synthesis problem is similar in some respects to the Aperture Synthesis problem
- Differences in the underlying signal cause necessary variations of approach - prior knowledge is required for RM-Synthesis
- Sparsity can be used as a prior in a number of circumstances
 - Point-like objects in FD
 - Faraday Caustics
- Basis Pursuit approaches should be possible