

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

# **Accelerating Dynamic MRI**

#### Uniform and random undersampling

Sebastian Kozerke

Institute for Biomedical Engineering, University and ETH Zurich Biomedical Engineering and Imaging Sciences, King's College London



### SNR – Speed



# SNR – Speed

#### **SNR = 32**







### Reconstruction

| Encoding: | $\vec{d} = \vec{E} \vec{m} + \vec{\eta}$ |
|-----------|------------------------------------------|
| Decoding: | $\vec{i} = F \vec{d}$                    |

|       | MR Sigr         | nal                 | Noise                            |
|-------|-----------------|---------------------|----------------------------------|
| Data  | Encoding matrix | E                   | Ψ                                |
| Image | Depiction       | FE<br>↓<br>Identity | FΨF <sup>H</sup><br>↓<br>Minimum |

# **Reconstruction formulas**

| Constrain |  |  |
|-----------|--|--|
| FE = Id   |  |  |

### **Solutions**

| Pseudo-inverse:             |                    | $F = (E^{H}E)^{-1}E^{H}$                                             |
|-----------------------------|--------------------|----------------------------------------------------------------------|
| <b>Optimum SNR inverse:</b> |                    | $F = (E^{H} \Psi^{-1} E)^{-1} E^{H} \Psi^{-1}$                       |
| Regularized solution:       | R < N <sub>c</sub> | $F = (E^{H} \Psi^{-1} E + \lambda \Theta^{-1})^{-1} E^{H} \Psi^{-1}$ |
|                             | $R > N_c$          | $F = \Theta E^{H} (E \Theta E^{H} + \lambda \Psi)^{-1}$              |

### Parallel imaging – performance

### **Geometry factor**



$$SNR^{SENSE} = \frac{SNR^{Full}}{\sqrt{R} \cdot g(x)}$$

$$\vec{g(x)} = \sqrt{\left(E^{H}E\right)_{i,i}\left(\left(E^{H}E\right)^{-1}\right)_{i,i}} \ge 1$$

Pruessmann KP et al MRM 1999

### Parallel imaging – ultimate performance



#### Information redundancy

How much information is redundant?

Transform data to a sparser coefficient space
Find model that suitably links coefficients
Retain key coefficients



| Original:                    | 16 bits/pixel  |
|------------------------------|----------------|
| Entropy rate <sup>1)</sup> : | 3.3 bits/pixel |
| "theoretical" R:             | 4.8            |



16 bits/pixel1.0 bits/pixel



<sup>1)</sup> Cosine Transform, Huffman encoding

# k-t undersampling





Time

# Uniform k-t undersampling



Time

# $x-t \rightarrow x-f$ space



#### $x-t \rightarrow x-f$ space



# k-t BLAST / k-t SENSE



### k-t SENSE – Temporal fidelity



### 12x k-t SENSE

### k-t SENSE – Training data



 $i = M^2 E^H (EM^2 E^H + \sigma^2)^+ m_{alias}$ 



### **Reconsidering temporal signals**



Spatial Weighting Basis functions

$$m(y,t) = UEV^{H} = WB = \sum_{n=1}^{N} W(y,n)B(n,t)$$



Our problem is well depicted with as few as 4 basis functions

#### PCA space



# k-t SENSE vs k-t PCA



# Perfusion imaging





### **3D Perfusion imaging**



### **10x 3D k-t PCA** (2.2 x 2.2 mm<sup>2</sup>)



R. Manka et al. JACC 2011

#### **Speed-up – Perfusion imaging**



Kellman P et al. MRM 2004Plein S et al. MRM 2007Plein S et al. Radiology 2005Jung B et al. JMRI 2008

Nayak KS et al. JCMR 2008 Otaz Vitanis V et al. MRM 2010

Otazo R et al. MRM 2010

# **3D Blood flow quantification**

#### 8x 3D k-t PCA



G. Crelier, GyroTools

# **Divergence-free constraint**



J. Busch et al. ISMRM 2011

### **3D Blood flow quantification**

#### **Healthy volunteer**



#### Patient with dilated aorta



### Limitations



### Random undersampling



Time

### **Compressed Sensing**



### **Perfusion imaging**





V. Vitanis et al. ISMRM 2008

### **Perfusion imaging**





V. Vitanis et al. ISMRM 2008

### Random versus uniform undersampling



### k-t group sparsity intensity (k-t GSI)



$$\min_{\mathbf{m}} \left\| \mathbf{i}^{g} \right\|_{1,2} = \left\| \mathbf{i}^{g}_{1} \right\|_{1,2} + \left\| \mathbf{i}^{g}_{2} \right\|_{1,2} + \dots \left\| \mathbf{i}^{g}_{k} \right\|_{1,2} \quad \text{s.t.} \quad \left\| \mathbf{E}_{u} \mathbf{i} - \mathbf{d} \right\|_{2} \le \varepsilon$$

### k-t GSI and k-t SPARSE

#### Reference





<u>9x *k-t* GSI</u>



M. Lustig et al. MRM 2007, M. Usman et al. MRM 2011, C. Prieto et al. MRM 2011

### k-t GSI and k-t SPARSE



M. Lustig et al. MRM 2007, M. Usman et al. MRM 2011, C. Prieto et al. MRM 2011

Significant spatiotemporal correlation in dynamic data

**Compact data representation** in x-f and x-pc spaces

**Uniform undersampling of 2-8x with L2 reconstruction** 

**Random undersampling** of 9x by exploiting group sparsity

**Temporal filtering** results if undersampling exceeds limits

**Combination with parallel imaging to effort higher factors**