Structural neuroimaging: experience in the study of brain development

Meritxell Bach Cuadra

Medical Image Laboratory (MIAL), Radiology Department, University Hospital Center and University of Lausanne (CHUV/UNIL) Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL)

Signal Processing Core - CHUV Unit, Centre d'Imagerie Biomédicale (CIBM)

06.09.11

Avec le soutien de:

Outline

- Motivation and clinical context
- Structural MRI of fetal brain in-utero
 - Technical challenges
- Reconstruction
 - Registration and Interpolation
- Segmentation
 - Classification in a Bayesian framework and MRF priors
 - Quantitative results
- Discussion

Motivation

 Fetal MRI is acquired in a clinical practice: as a complementary diagnostic tool for a precise visualization of pathologies of the 2nd and 3rd trimester. 27 weeks of gestational age (GA)

Ultrasound MRI Leijser et al., Early Human Development, 2009

- Further our understanding of normal early brain development
 - Until now, largely based on studies of post-mortem brains or premature newborns
 - Fetal MRI can provide a real *in vivo* quantification of the normal developing brain

Clinical motivation

- Study of brain development:
 - Study of pre-term
 - Congenital heart disease
 - Intra-uterine growth restriction
 - Mild ventriculomegaly

Mild ventriculomegaly

Brown et al. 2004 , www.medscape.com/

- Give parents a more accurate picture of what they can expect for their child from a neurological and developmental standpoint.
- Help in making decisions during pregnancy.

Clinical acquisition

Philips 1.5 Tesla, T2-w SSFSE sequence (TR 7000 ms, TE 180 ms, FOV 40 cm, slice thickness 5.4 mm, in plane res 1.09 mm)

Fetal MRI: technical challenges

- Motion is an important challenge:
 - Intra-plane, inter-slice, inter-volume
 - Motion from fetus and from mother
 - Sedation helps partially
 - To avoid motion: fast acquisitions and low image resolution
 - Thus, poor SNR, and partial volume

Fetal MRI: technical challenges

- Rapidly changing appearance of the fetal brain:
 - In contrast intensity -> myelination
 - In morphometry -> continuous brain growth and ongoing folding

Small data sets

As **safety** remains an open question, ethical considerations restrain the acquisition of large datasets of healthy fetuses.

Reconstruction (I)

- Creating a super-resolution (SR) volume: spatial methods:
 - Observation model $y_r = H_r x + n_{r_r}$
- Motion estimation
- SR reconstruction:
 - Bayesian (Gholipour et al 2009)
 - Interpolation-Registration (Rousseau et al 2006, Jiang et al 2007, Kim et al 2009)

y_r: LR images, r {1..n} x: SR images n: observed noise H_r: motion, degradation

Reconstruction (II)

2D to 3D registration problem

Scattered Data Interpolation (SDI)

High-resolution image

Reconstruction of SR image

Low resolution image (voxel size 1.09 x 1.09 x 5.4 mm) High resolution image (voxel size 1.09 x 1.09 x 1.09 mm)

- Probabilistic and anatomical atlas (Habas et al 2008, 2010) -> avoid circularity risk of priors
- Data driven:
 - Bach Cuadra 2009 -> MRF priors
 - Gholipour et al 2011 -> user supervision
 - Caldairou et al 2011 -> topological model

Statistical classification of fetal brain tissue

- Challenges
 - Poor spatial resolution and / or low SNR in MR images due to fast acquisitions
 - Non-homogenous brain tissues (myelination, cortical maturation)
 - Partial volume effect

Statistical classification of fetal brain tissue

0.03 25# Proportion of voxels per gray level Ċ2 WM₂ WM WM₂ C_{12} Cı GM₂ Cz CSF GM GM₁ BG 20 60 80 100 120 40 Gray level

Bayesian classification after Gaussian Mixture fitting on image histogram

	Tissue	Represente Main, A	d by label Axiliary	In Figure		
True	CoGM CeGM WM CSF	GM C1 WM CSF	GM C2,C1 C2	E A D		
PV	CSF+NB CSF+GM GM+WM WM+CSF	GM WM C1 C2	C1 	B C F		

Bach Cuadra et al., MICCAI 2009

14

Markov Random Field model

Local spatial priors

 Refining the classification with a Markov Random field as spatial distribution model, applied in 3 steps and dependent of cortical distance

$$x'_{i} = \max_{\forall x \in L} (U_{i}(x))$$

$$U_{i}(x) = V_{i}(x_{i}) + \sum_{j \in N_{i}} \frac{\delta_{n}(x_{i}, x_{j})}{d(x_{i}, x_{j})}, n = 1, 2, 3$$

- CSF
- Cortical gray matter
- Central gray matter
- White matter

MRF Energy

3. Reclassification of C2 into either WM or CSF

 $\delta_{3}(x_{i}, x_{j}) = \begin{cases} 2, \text{ if } x_{i} = C_{1} \text{ and } x_{j} = GM \\ 3, \text{ if } x_{i} = C_{1} \text{ and } x_{j} = WM \\ 3, \text{ if } x_{i} = C_{2} \text{ and } x_{j} = WM \\ 2, \text{ if } x_{i} = C_{2} \text{ and } x_{j} = CSF \\ 0, \text{ otherwise} \end{cases}$

Intermediate results

Contour extracted after statistical classification Manual segmented contour

Fetal brain basal ganglia segmentation

Areas where cortical and central GM are touching

Manual initialization: 3 points: center of BG minor and major axis.

00	
Local spatial prior (synthetic probabilistic maps)	

expert (manual)
segmentation
automated
segmentation

Bach Cuadra et al., ISMRM 2010

3D Surface reconstruction

- Import the initial segmentation in Freesurfer
- Optimization of the cortical surface according to the gray / white intensity gradient in 3D
- Incl. Topology correction (geometrically accurate 3D representation of the cortex)

Input surfaces (volumes) for Freesurfer:

- brain mask
- GM/WM interface
- basal ganglia segmentation

http://surfer.nmr.mgh.harvard.edu/

Quantitative image analysis of in-utero fetal MRI

	WM		E	Basal	Cort	ical GM	С	SF	IC	cv	Cortical Area	Global GI	Mean curvature	Positive curvature
GA (SA)	Mean	Var	Mean	Var	Mean	Var	Mean	Var	Mean	Var				
29	873,681	8,184 (9%)	6,021	538 (9%)	65,645	2541 (4%)	43,635	3484 (8%)	203,540	6423 (3%)	21,116	1.16	-0.0883	0.2694
29.4	129,477	4,870 (4%)	8,068	1138 (14%)	61,418	5871 (10%)	76,882	2132 (3%)	270,701	2112 (1%)	25,411	1.12	-0.0966	0.2645
31.5	157,192	12,130 (8%)	12,428	2634 (21%)	68,790	13,972 (20%)	54,670	3152 (6%)	294,431	2879 (1%)	32,679	1.19	-0.0864	0.3361

Surfaces reconstruction: 29 weeks

Preliminary results: GM/WM interface, WM volume

Preliminary results: ICV volumetry

- 11 fetuses
- 24 to 35 weeks

Gestational Age (in weeks)

Discussion

Methodological questions:

- Improvement of high-resolution image reconstruction
- Need for reducing user interaction: mainly on surface extraction
- Validation with echographic measures

Clinical questions:

- Quantify subtle deviations from normal brain development through cortical folding studies-> gyration
- Provide quantitative norms for clinical purpose
- Inclusion of other MR Diffusion Imaging for anatomical connectivity analysis

Acknowledgements

Dr. Marie Schaer Prof. E. Eliez

Dr. Laurent Guibaud

Damien Ferrario Anouk Andre Gabriele Bonanno Prof. Jean-Philippe Thiran

References

2011

'Quantitative morphometry analysis of the fetal brain using clinical MR imaging', **M. Bach-Cuadra**, G. Bonanno, L. Guibaud, S. Eliez, J-P. Thiran, and M. Schaer, <u>19th Annual Meeting and Exhibition ISMRM</u>, May 7-13, Montreal, Canada.

2010

'Central and Cortical Gray Mater Segmentation of Magnetic Resonance Images of the Fetal Brain', M. Bach Cuadra, M. Schaer, G. Bonanno, A. André, L. Guibaud, S. Eliez, and J-P. Thiran,, <u>ISMRM-ESMRMB Joint Annual Meeting</u>, Stockholm, Sweden, 1st-7th May, **2010**.

'A post-processing pipeline to reconstruct the developing fetal brain using low-resolution MRI', M. Schaer, M. Bach Cuadra, S. Eliez, L. Guibaud, J.-Ph. Thiran,, <u>16th Annual Meeting of the Organization for Human Brain Mapping</u>, June 6th-10th, Barcelona, Spain, **2010**.

2009

'Brain tissue segmentation of fetal MR images', M. Bach Cuadra, M. Schaer, A. Andre, L. Guibaud, S. Eliez, J.-P. Thiran,, Workshop on Image Analysis for Developing Brain, In 12th International Conference on Medical Image Computing and Computer Assisted Intervention, London, UK, September 20-24th.

2008

'Brain Surface Segmentation of Magnetic Resonance Images of the Fetus', D. Ferrario, M. Bach Cuadra, M. Schaer, N. Houhou, D. Zosso, S. Eliez, L. Guibaud and J.-P. Thiran,', <u>In proceedings of the 16th European Signal Processing</u> <u>Conference (EUSIPCO)</u>, Lausanne, Switzerland, August 25th-29th.

In preparation

M. Bach Cuadra, G. Bonanno, A. Andre, L. Guibaud, S. Eliez, J.-P. Thiran, M. Schaer, 'Automated segmentation of magnetic resonance images of the fetal brain for developmental studies'.

