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FMRI in a nutshell
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Is there a face-selective brain region?

neurovascular coupling
hemodynamics

T2* effect
BOLD response

whole-brain scans
2x2x2mm3

20-30 slices
every 2-4s



Resting-state fMRI
n Evoked activity

n Brain consumes 
20% of energy budget

n only 5% is needed for stimuli 
n 95% to maintain the machine 

n Consistent “deactivation” pattern 
in neuroimaging data such as
PET and fMRI

3[Raichle et al.]
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Intrinsic



Resting-state fMRI
n Evoked activity

n Brain consumes 
20% of energy budget

n only 5% is needed for stimuli 
n 95% to maintain the machine 

n “Deactivation” pattern in 
neuroimaging data such as
PET and fMRI

n Intrinsic activity
n Seed voxel correlation
n Distinctive patterns 

of brain activity 
n Relevance for neurological 

disorder & disease
4[Biswal, Raichle, Buckner, Greicius, Mason et al. 2007, ...]
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“Resting states reflect the intrinsic activity of anatomically connected networks [...] 
  rather than spontaneous behavior or conscious mentation” 

  [Fox & Raichle, Nature Review Neuroscience, 2007]



EEG rhythms
n Temporal frequency bands

n Simultaneous 
EEG/fMRI can be 
acquired and cleaned

n Alpha-band energy
correlates negatively
with attention network

6

time
Beta 13-30 Hz

Alpha 8-13 Hz

Theta 4-8 Hz

Delta 0.5-4 Hz

to lie still with eyes closed and not fall asleep. Maintenance of
wakefulness throughout the sessions was checked for (self-
reported or sleep patterns on EEG), leading to the exclusion of
4 subjects. An additional subject was excluded because of poor
data quality, and hence datasets of 10 subjects were analyzed (6
female, 4 male, aged 31 ! 3 yr). Each of two consecutive 20-min
sessions per subject yielded 300 T2*-weighted echo-planar image
volumes covering the entire cerebrum (voxel size 3.44 " 3.44 "
4 mm3, 19 slices with 1-mm gap in 2.8 s, volumes recorded every
4 s, echo time 50 ms).

EEG was recorded by using the BrainAmp MR EEG ampli-
fier, BRAIN VISION RECORDER software (Brainproducts, Munich,
Germany), and the BrainCap electrode cap (Falk Minow Ser-
vices, Herrsching-Breitbrunn, Germany) at 29 positions (follow-
ing the 10!20 system, sampled at 5 kHz, 0.016–250 Hz). This cap
provides a reference position between Fz and Cz. Mastoid or ear
electrodes would be susceptible to wire loops and effects from
head restraining pads.

Off-line EEG signal correction was based on averaging and
then subtracting imaging and pulse artifact (10, 11), as imple-
mented in the BRAIN VISION ANALYZER (Brainproducts,
Munich). In each session, the 300 EEG segments contaminated
by imaging artifact were averaged. This first step is similar to
recording evoked potentials, where time-locked averaging serves
to identify a weak response embedded in the strong EEG signal.
In this average, the non-locked EEG contribution to the signal
zeroes out, and (different from evoked potentials) this average
artifact signal is then subtracted from the artifact-laden EEG
recorded originally, thus reconstituting the ‘‘true’’ biological
EEG signal. This approach requires nonsaturating amplifiers
and assumes constant artifact properties (Fig. 4, which is pub-
lished as supporting information on the PNAS web site, www.
pnas.org). To facilitate visual inspection of the corrected EEG,
a 0.5-Hz high-pass and, due to residual high-frequency artifact
from under-sampling, a 30-Hz low-pass Butterworth filter (48
dB) was used after the subtraction algorithm, precluding analysis
of activity in the gamma range. Power spectrum analyses were
performed by using a Fast Fourier Transform (1-s epochs,
Hanning window). A more detailed description of these methods
and their validation for our setting is reported elsewhere (12).

Image preprocessing [realignment, spatial normalization, and
spatial smoothing with a 10-mm full width at half maximum
(FWHM) Gaussian kernel], and statistical analysis were carried
out by using the SPM99 package (www.fil.ion.ucl.ac.uk!spm).
Regressors for the model were derived from convolving the
power time courses of the bands of interest (calculated from the
raw amplitude mean of the two occipital EEG leads O1 and O2)
with a canonical hemodynamic response function. They were
then down-sampled to the frequency of image volume sampling
and mean-scaled. For group analysis, a fixed-effects model was
applied, and statistical inferences were corrected for multiple
comparisons by using Gaussian random field theory. Responses
were considered significant at P # 0.05, corrected, if confirmed
in a random effects model at P # 0.001, uncorrected.

Results
Like others (13), we first studied spontaneous fluctuations of
‘‘alpha’’ oscillations (8–12 Hz), the classical EEG hallmark of
resting wakefulness with eyes closed (14). In other words, the
power time course in this frequency band during a prolonged
continuous resting state (convolved with the hemodynamic
response function) served as a regressor for the analysis of the
simultaneously acquired image data. Accordingly, positive cor-
relation with alpha power should determine whether, and if so,
which brain regions are more active when the brain expresses
alpha oscillations than during alpha desynchronization. Positive
correlation with alpha power was sparse and restricted to two
foci in the cingulate gyrus and occipital cortex, but we found
widespread negative correlation with alpha power in a bilateral
fronto-parietal network (Fig. 1A and Table 1). This latter
neuroanatomical pattern is well-known from functional neuro-
imaging experiments that overtly recruit attentional processes
and related cognitive resources (15). We found no correlations
between fMRI signal and power in the 4- to 7-Hz theta band.

Next, we analyzed activity f luctuations occurring in correla-
tion with higher frequency oscillations in the ‘‘beta’’ band (13–30
Hz). We subdivided the beta range into three bands (16), and
performed the same type of analysis as for alpha power, probing
positive and negative correlations. No significant fMRI signal
changes were associated with the beta-1 range (13–16 Hz), but
we found positive correlation with beta-2 power (17–23 Hz) in

Fig. 1. Brain regions where BOLD fMRI signal is positively (green) or negatively correlated (red) with spontaneous power fluctuations in EEG frequency bands
at rest (A, 8–12 Hz; B, 17–23 Hz). The results from a fixed effects group analysis (see Methods) are overlaid onto a rendering of a template brain and visualized
at a threshold of P # 0.001, uncorrected. Note that activation in all clusters was also significant (P # 0.05) after correction for multiple comparisons, and see Table
1 for results at the level of a random effects analysis.

11054 " www.pnas.org!cgi!doi!10.1073!pnas.1831638100 Laufs et al.

[Laufs et al., NeuroImage, 2005; Laufs et al, PNAS, 2003]



EEG mapping
n Spatial topography is important too
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EEG microstates
n Spatial clustering of topography maps
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[Lehmann, 1971; Pascual-Marqui et al, 1995; Lehmann et al., 2009]



EEG microstates
n Spatial clustering and cross-validation indicate

n Four microstates explain spontaneous EEG (awake rest)
n Average duration of microstates is 100ms

n Large cohorts (>500), age 6-67 [Koenig et al., 2002]

n Microstates are functional
n Pre-stimulus microstate determines cognitive processing 

and perception [Mohr et al., 2009; Britz et al., 2009]

n Modified in mental diseases
n Duration is very sensitive parameter
n Including schizophrenia, depression, Alzheimer

9[Lehmann et al., 1998; Changeux, Michel, 2008; Lehmann et al., 2009]



n Consistent topographies across subjects

EEG microstates in the MR scanner
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Fig. 4. (Supplementary) Single-subject (top; 3 sessions) and group-level (middle) template maps of the four dominant EEG microstates. FMRI activation maps (bottom)
revealed by GLM analysis of the microstate occurrences after convolution with the hemodynamic response (11).

Footline Author PNAS Issue Date Volume Issue Number 7

[Britz, VDV, Michel, NeuroImage, 2010]
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Making the bridge from EEG to fMRI

11[Britz, VDV, Michel, NeuroImage, 2010]

20 sec

⊗
hemodynamic

response function

GLM analysis
of fMRI data



12

Auditory-phonological Visual Self-referential Dorsal attention

[Britz, VDV, Michel, NeuroImage, 2010]

Same networks are confirmed by fMRI group ICA analysis (out of 20 components)
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How to explain that EEG 
dynamics remain 
meaningful after huge 
temporal smoothing?



Fractals everywhere...?
n Deterministic fractals

n Completely predictable
n Leads to exact or quasi self-similarity
n E.g., Mandelbrot set

n Statistical fractals
n Statistical measures

are preserved across 
scales

n E.g., stock market index,
many physical and
biological growth
processes, 
hearth rhythm

14[Kolmogorov; Mandelbrot, 1982; Penland, 1984; Mumford, 2001]

Benoît Mandelbrot

Zoom into Mandelbrot set



Fractal analysis of microstates
n Bipartitioning and random-walk embedding

n Four microstates (1, 2, 3, 4)... 
like the four bases of the DNA
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[Goldberger et al., PNAS, 2002; VDV, Britz, Michel, PNAS, 2010]

{X(t)}
t∈R =

�
aHX(t/a)

�
t∈R , a > 0



Statistical fractals and wavelets

16[Kolmogorov; Mandelbrot, 1982; Abry; Mumford, 2001; Jaffard, 2004]

1/scale

time

Wavelet fractal analysis
Coefficients dX(a, k) =

1
a

�
X(t)ψ(t/a− k)dt

Stationary at each scale

Self-similarity, {dX(0, k)} =
�
2−jHdX(2j , k)

�

Short-range dependency

Self-similar processes

Statistically undistinguishable under dilation and change of scale

{X(t)}
t∈R =

�
a
H
X(t/a)

�
t∈R , a > 0

No characteristic scale of time, single Hurst exponent H

Non-stationary and long-range dependency

Variogram: E[|X(t+ a)−X(t)|q] = Cqa
qH
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scale (~1/freq)

time (3 min)

EEG

fMRI

[VDV, Britz, Michel, PNAS, 2010]



Log-scaling diagram
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Estimating E[|dX(2j, k)|q] from the structure function

S(dX , j, q) =
1

nj

nj�

k=1

��dX(2j , k)
��q
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Fig. 5. (Supplementary) The log-scaling diagrams (pooled over all subjects, sessions, and possible bipartitions) of the various microstate sequences show the energy of the
wavelet coefficients as a functions of scale j, which corresponds to log2(2

jS(dX , j, 2)). The equivalent sampling frequency is indicated on the top horizontal axis. We
determined the fitting region as the part of the log-scaling diagram the shows a power law; i.e., between 256ms–16s. The fitting of the power law is plotted in dashed line.
The errorbars indicate the 10% and 90% percentile.
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Fig. 6. (Supplementary) The scaling spectra (pooled over all subjects, sessions, and possibile bipartitions) of the various microstate sequences reveal the fractal signature
of the microstate sequences. A linear trend reflects monofractality, while multifractality is characterized by a departure from linearity; i.e., the Hurst exponent H corresponds
to the slope of the scaling spectrum and higher-degree cumulants c2 and c3 capture multifractal deviations. The dotted line indicates the scaling spectrum of white noise
(H = 0.5). The errorbars indicate the 10% and 90% percentile.

8 www.pnas.org — — Footline Author

confirms weak self-similarity,
similar to PSD (q=2)

[Van De Ville, Britz, Michel, PNAS, 2010]



Scaling spectrum
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Fig. 5. (Supplementary) The log-scaling diagrams (pooled over all subjects, sessions, and possible bipartitions) of the various microstate sequences show the energy of the
wavelet coefficients as a functions of scale j, which corresponds to log2(2

jS(dX , j, 2)). The equivalent sampling frequency is indicated on the top horizontal axis. We
determined the fitting region as the part of the log-scaling diagram the shows a power law; i.e., between 256ms–16s. The fitting of the power law is plotted in dashed line.
The errorbars indicate the 10% and 90% percentile.
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Fig. 6. (Supplementary) The scaling spectra (pooled over all subjects, sessions, and possibile bipartitions) of the various microstate sequences reveal the fractal signature
of the microstate sequences. A linear trend reflects monofractality, while multifractality is characterized by a departure from linearity; i.e., the Hurst exponent H corresponds
to the slope of the scaling spectrum and higher-degree cumulants c2 and c3 capture multifractal deviations. The dotted line indicates the scaling spectrum of white noise
(H = 0.5). The errorbars indicate the 10% and 90% percentile.

8 www.pnas.org — — Footline Author

scaling spectrum should be qH for monofractal
H > 0.5 : long-range dependencies

[Van De Ville, Britz, Michel, PNAS, 2010]
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Fig. 6. (Supplementary) The scaling spectra (pooled over all subjects, sessions, and possibile bipartitions) of the various microstate sequences reveal the fractal signature
of the microstate sequences. A linear trend reflects monofractality, while multifractality is characterized by a departure from linearity; i.e., the Hurst exponent H corresponds
to the slope of the scaling spectrum and higher-degree cumulants c2 and c3 capture multifractal deviations. The dotted line indicates the scaling spectrum of white noise
(H = 0.5). The errorbars indicate the 10% and 90% percentile.

8 www.pnas.org — — Footline Author



Fractal organization of microstates
n Monofractal behavior

over two orders of 
magnitude 
(256ms-16s)

n Shuffled labels give
same fractal 
signature!

n Equalized durations
result into white 
noise dynamics
(H=0.50, p<0.05)

20[Van De Ville, Britz, Michel, PNAS, 2010]
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Criticality of the brain
n Our findings

n Microstates are a global functional brain measure
n Dynamics are strongly monofractality
n Implies non-stationarity and long-range correlations

n Scale-free organization is reminiscent of system at 
critical state near phase transition

n Further evidence to seminal work of Chialvo, 
Bullmore, Bak, ...
n Power-law behavior of various brain measures 

n Space: scale-free small-world networks
n Time: EEG, MEG-fMRI synchronization, ...

n Universal organizing principle, 
in order to reorganize and adapt rapidly
~ self-organization of complex system

21



Implications for fMRI...
n Scale-free dynamics at the EEG timescale
n At the fMRI timescale

n Despite hemodynamic blur (~10 sec), meaningful 
process (with same characteristics) is observed

n Scale-free organization is key to maintain information 
through timescales

n A lot of redundant information is
acquired
n Time: 

n Hemodynamic response is slow
n Spatial:

n Vascular nature of signal, 
spatial extent

22

space

time

fMRI



... and regularization for fMRI

23

activity-
inducing signal

system
measured 

signal

activity-
related 
signal

disturbance term

differential
operator

y

[Khalidov et al., SP; Gaudes-Caballero et al., HBM; Karahanoglu et al., IEEE TSP]

n Identify differential operator L that “inverts” 
hemodynamic response
n Linearization (first-order Volterra term)

n Analysis prior:
n Novel analysis method of fMRI data (“paradigm free”)
n Deploy for image reconstruction

H L

ŝ = argmin
s

||y − s||22 + λ ||L {s}||1

Isik
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