Spatial Encoding in MRI with Nonlinear Fields

Daniel Gallichan

Jürgen Hennig, Chris Cocosco, Sebastian Littin, Gerrit Schultz, Hans Weber, Anna Welz, Walter Witschey, Maxim Zaitsev

Overview

- Encoding with curved fields
 - What's different to normal?
 - Including first in vivo brain images
- Encoding with linear and curved fields simultaneously
 - How does the reconstruction work?
 - Experimental verification

More general 2D encoding

Why bother with curved fields?

- Rectilinear fields are poorly suited to living organisms
 - RF coils are already matched to anatomy why not gradients?

96-channel RF coil (Wiggins et al, MRM 2009)

Why bother with curved fields?

• Reduce nerve stimulation caused by gradient switching

Multiple-region gradient encoding (Parker and Hadley, MRM 2006)

Why bother with curved fields?

- Because we can!
- Potential applications include:
 - Allow imaging where linear fields are too difficult/expensive (portable MRI)
 - New kind of image acceleration (more later...)
 - Real-time shimming
 - Phase preparation
 - PIPS, M. Zaitsev, proc ISMRM 2009
 - GradLoc W. Witschey, proc ISMRM 2011 and MRM (in press)
 - Combination with MREG/OVOC to provide fast spatial encoding

Hardware: Modified Siemens 3T Trio

The fields we decided to make

The hyperbolic paraboloid

Ambiguous encoding

Voxels rotated 180° from each other receive identical encoding - they will overlap (alias) in the image

But we already know how to deal with aliasing

• Parallel Imaging (SENSE or GRAPPA) involves acquiring less data and therefore aliased images

For our quadratic fields

Linear gradients

Quadratic gradients After FFT

Quadratic gradients After FFT and intensity correction

SENSE-like unaliasing

Separate coil images

Unaliased images in encoding space

G. Schultz et al, MRM 2010

Make 'human readable'

Make 'human readable'

Make 'human readable'

'Built-in' acceleration factor 2

Parallel imaging technique using localized gradients

Hennig et al, MAGMA 2008

Understanding the aliasing

Understanding the aliasing

Seeing the benefit

Linear gradients

Quadratic gradients

Seeing the benefit

Linear gradients

Quadratic gradients

And now... the first volunteer...

And the first image...

And after some processing...

And after some processing...

Linear encoding

Subject approval

And different contrast...

And different contrast...

Taking things further...

Linear gradients and quadratic gradients, simultaneously

A standard pulse sequence

5 independent spatial encoding channels!

The familiar method of encoding

The new-but-reasonably-understood way

Uncharted territory...

Uncharted territory...

This is a weird image!

- How can we explain where this shape comes from?
- How can we predict things more generally?
- Can we use this to remove the PatLoc 'hole'?

What patterns can we make?

Just linear gradients

What patterns can we make?

Just quadratic gradients

What patterns can we make?

Linear gradients and PatLoc gradients

2D Phase Encoding

Measured data:

They don't match!

Simulation:

It turns out that 'handedness' of PatLoc fields is important:

So clearly just looking at this 'dual *k*-space' is not enough to quickly tell the whole story

Pure linear

Pure quadratic

Pure linear

Pure quadratic

||

Getting rid of the hole...

- New encoding fields need not remain proportional to the linear gradients
- Usually have two parameters (k_x, k_y) to encode 2D image
 - Now have four parameters (k_x, k_y, k_A, k_B) to encode 2D image
- Image reconstruction more complicated...

s = Em

• Reconstruction then performed with an iterative method, such as conjugate gradients

4D Radial-based trajectory (4D-RIO)

Gallichan et al, MRM 2011

Experimental verification

- 128 samples x 128 spokes, 8 RF coils
- Reconstructed to 160x160 Cartesian grid
 Encoding matrix 27 Gb, recon originally took ~10 hours on Desktop
 PC, now ~3 minutes in a more optimised parallel accelerated version

Phantom

4D-RIO

4D-RIO After calibration

Experimental verification – in vivo

- 256 samples x 256 spokes, 8 RF coils
- Reconstructed to 320x320 Cartesian grid
 Encoding matrix 430 Gb 'fast' code takes ~30 mins per iteration
 New Matlab-based GPU implementation ~ 10 sec per iteration

Experimental verification – in vivo

- 256 samples x 256 spokes, 8 RF coils
- Reconstructed to 320x320 Cartesian grid
 Encoding matrix 430 Gb 'fast' code takes ~30 mins per iteration
 New Matlab-based GPU implementation ~ 10 sec per iteration

Conclusions

- PatLoc offers exciting new opportunities for spatial encoding in MRI
- Nonlinear encoding can still be performed in the 'traditional' way
 - Phase/Frequency encoding
 - SENSE-like reconstruction to resolve ambiguities
- More generally, encoding can be almost arbitrary – but reconstruction is slower
 - Is there an 'optimal' encoding pattern for a given scan time?

The making of...

Acknowledgements

Freiburg PatLoc Team

Jürgen Hennig

Chris Cocosco

Sebastian Littin

Gerrit Schultz

Anna Welz

Hans Weber Ma

Maxim Zaitsev

Collaborators

The INUMAC project supported by the German Federal Ministry for Education and Research, grant #13N9208