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The Need for Speed

• MRI data collection is 
inherently slow 

• Faster imaging is essential 
in many applications

• Parallel Imaging
– Faster imaging by reducing data
– Exploit multiple receiver arrays
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Coil Arrays

* Courtesy, Phil Beatty

Used to:
• Increase SNR 
• Acceleration

32 channels 
becoming standard

12ch body coil
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Coil Sensitivities

• Multiple local receiver coils
• Coil sensitivities provide 

additional information for 
reconstruction

• Allows undersampling/aliasing in 
k-space



Standard k-space sampling

Reduced k-space sampling

Parallel receive coils reduce sampling requirements



Parallel Imaging

coil sensitivities

3x undersampling

reconstruction

coil 1 coil 2 coil 3 coil 4



Part II: 
Autocalibration  

methods

Chapter 1: SMASH 

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 

Chapter 1: SMASH 

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 

Chapter 1: SMASH 

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 

Chapter 1: SMASH 

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 

Chapter 1: SMASH 

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 

Chapter 1: SMASH 

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 

Chapter 1: SMASH 

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 

Chapter 1: SMASH 

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 Chapter 1: SMASH

Chapter 2: SENSE

Chapter 3::DFFGF

 

26: vd-AutoS

27: GRAPPA

GRAP

 1:  SMASH

 2:  SENSE

      PILS

Contents
Part I: 

Explicit Sensitivity-
based methods



Contents
Part I: 

Explicit Sensitivity-
based methods

------

Sensitivity 
Encoding
(SENSE)



SENSE model

FT

FT
S2

S1

D
ata

D
ata

RECONSTRUCTION

Ex = y
Pruessmann
et. al., 1999



SENSE

*image, courtesy of Kevin King



SENSE

• Full inverse model

*image, courtesy of Kevin King



SENSE

• Full inverse model
• Noise optimal
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SENSE

• Full inverse model
• Noise optimal
• One combined image
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SENSE

• Full inverse model
• Noise optimal
• One combined image

• Prone to errors in 
sensitivity map 
estimation. 
– Often less robust in 

practice

*image, courtesy of Kevin King
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• Autocalibration methods will have k-space 
center densely sampled

• Autocalibration tends to be more robust in 
practice

AutoCalibration



Correlation in k-space

S2

S1

• Image weighting is equivalent to k-space blurring
• Coil sensitivities are smooth, therefore the blurring 

kernel is compact.

• k-space becomes locally correlated.

multiplication convolution
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• Calibration Matrix has a Null-space

• The null-space IS our calibration information

• Same info used by GRAPPA/SPIRiT etc....
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V||x = x
Eigen-Vector solution

• Solution spanned by eigenVecs with eigenVals = 1
• Approach:

– Compute eigenVecs explicitly
– Project only on those with eigenVals = 1

• Eigen-decomposition is fast in image domain. 
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V||x = x
Eigen-Vector solution

• EigenVecs with EigenVals = 1 are "sensitivity maps"

• Solution is spanned by sensitivity maps 



V||x = x
Eigen-Vector solution

• EigenVecs with EigenVals = 1 are "sensitivity maps"

• Solution is spanned by sensitivity maps 

Totally makes SENSE!
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FOV limitations

Field-of-View Limitations in Parallel Imaging
Mark A. Griswold,1* Stephan Kannengiesser,2 Robin M. Heidemann,1 Jianmin Wang,2

and Peter M. Jakob1

Parallel imaging is one of the most promising developments in
recent years for the acceleration of MR acquisitions. One area
of practical importance where different parallel imaging meth-
ods perform differently is the manner in which they deal with
aliasing in the full-FOV reconstructed image. It has been re-
ported that sensitivity encoding (SENSE) reconstruction fails
whenever the reconstructed FOV is smaller than the object
being imaged. On the other hand, generalized autocalibrating
partially parallel acquisition (GRAPPA) has been used success-
fully to reconstruct images with aliasing in the reconstructed
FOV, as in conventional imaging. The disparate behavior of
these methods can be easily demonstrated by a few simple
illustrative examples. Additional in vivo examples using
GRAPPA and modified SENSE (mSENSE) make this distinction
clear. These experiments demonstrate that SENSE fails to re-
construct correct images when coil sensitivity maps are used
that do not automatically account for the object size and there-
fore the aliasing in the reconstructed images. However, with the
use of aliased high-resolution coil sensitivity maps, accurate
SENSE reconstructions can be generated. On the other hand,
GRAPPA produces images with an aliasing appearance that is
exactly as would be expected from normal nonaccelerated ac-
quisitions. An understanding of these effects could potentially
lead to fewer operator-dependent errors, as well as a better
understanding of the differences between the underlying recon-
struction processes. Magn Reson Med 52:1118–1126, 2004.
© 2004 Wiley-Liss, Inc.
Key words: parallel imaging; RF coil arrays; SENSE; GRAPPA;
aliasing

Parallel imaging is one of the most promising develop-
ments in recent years for the acceleration of MR acquisi-
tions (1–19). These methods are all based on extracting
additional spatial information from an array of receive
coils (20). In the last few years, these methods have been
developed to the extent that they can be used in regular
clinical imaging.

At this point, most researchers divide parallel imaging
techniques into two groups: those that operate in image
space, and those that operate in k-space. While this clas-
sification is common and based on historical precedents,
we prefer to categorize the methods in terms of how they
arrive at their solution. Most image-domain methods and
some k-space methods reconstruct the image by directly
inverting the reconstruction problem. Sensitivity encoding
(SENSE) (9) is the prototypical example of this type of

method. SENSE reconstructs each pixel by inverting a
small matrix that effectively unfolds the aliased image.
Sensitivity profiles from an array of coils for encoding and
reconstruction in parallel (SPACE-RIP) (10), partially par-
allel imaging with localized sensitivities (PILS) (11), gen-
eralized SENSE (14), modified SENSE (mSENSE) (15), gen-
eralized encoding matrix (GEM) (16), and generalized si-
multaneous acquisition of spatial harmonics (SMASH)
(17) all directly invert the reconstruction problem, and are
therefore in the same category as SENSE. We refer to these
methods as direct methods.

The other category of methods includes those that use a
small amount of acquired data to reconstruct data that
were skipped in the acquisition. The prototypical example
in this case is SMASH (7), in which one line of acquired
data is used to regenerate several lines in the reconstructed
k-space. The final image is obtained after a Fourier trans-
form (FT) is performed. Other methods in this category
include AUTO-SMASH (8), VD-AUTO-SMASH (12), and
generalized autocalibrating partially parallel acquisition
(GRAPPA) (19). These are all regenerative or indirect
methods in our classification scheme. A key feature of
these methods, especially those that operate completely in
k-space (i.e., AUTO-SMASH, VD-AUTO-SMASH, and
GRAPPA), is that no assumption is made about the com-
pleteness of the source data used in the reconstruction.
Parameters can be derived that provide the minimum error
reconstruction from nearly any configuration of source
lines to any set of missing lines. While many of these
indirect reconstruction possibilities are not necessarily
useful for image reconstruction, these indirect algorithms
provide a large degree of freedom in this regard.

In general, all of the above parallel imaging methods
result in similar reconstructed images whenever accurate
coil sensitivity information can be obtained. However, one
area of practical importance where these two classes of
methods perform very differently is the manner in which
they deal with aliasing in the full-FOV reconstructed im-
age.

It has been reported and widely observed that SENSE
reconstruction fails whenever the reconstructed FOV is
smaller than the object being imaged (21,22). This can be a
hindrance in practice, since the operator must ensure that
the chosen FOV is always larger than the object. This is not
normally a problem in conventional imaging without par-
allel imaging. In fact, aliased images are common in many
applications, such as cardiac examinations, where some of
the FOV is irrelevant to the diagnosis, and can therefore be
aliased with other parts of the image. By intentionally
aliasing these parts of the image, one can achieve an in-
crease in imaging speed at a constant resolution. However,
since the FOV is always required to be larger than the
object, this is not possible in SENSE-type imaging without
the use of higher acceleration factors.

1Department of Physics EP5, University of Würzburg, Würzburg, Germany.
2Siemens Medical Solutions, Erlangen, Germany.
Grant sponsor: Siemens Medical Solutions; Grant sponsor: Deutschen For-
schungsgemeinschaft (DFG); Grant number: DFG JA827/4-2.
*Correspondence to: Mark A. Griswold, Department of Physics EP5, Univer-
sity of Würzburg, Am Hubland, 97074 Würzburg, Germany. E-mail:
mark@physik.uni-wuerzburg.de
Received 5 June 2003; revised 9 June 2004; accepted 9 June 2004.
DOI 10.1002/mrm.20249
Published online in Wiley InterScience (www.interscience.wiley.com).
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reconstructions. At 32 cm, the entire phantom was within
the FOV, while at 28 cm and 24 cm, portions of the phan-
tom were aliased in the full-FOV reconstruction. For these
simulations, the coil maps used for the SENSE reconstruc-
tion were cropped to the reconstructed FOV. For the
GRAPPA reconstructions, a block of 16 lines from the
center of k-space (eight additional lines) were used to
determine the reconstruction parameters with a block size
of 4, as in Ref. 19. Afterwards, these additional lines were
discarded, so that the final image shown here depicts the
result from using only the normally acquired and recon-
structed lines.

Additional simulations were performed using relative
coil sensitivity maps at the two smaller FOVs. In this case,
the coil maps were derived from aliased component coil
images and an aliased “body coil” image that represented
the signal that would have been obtained from a coil with
homogeneous sensitivity. These simulations were per-
formed once with full-resolution (128 ! 128) source im-
ages, and once with low-resolution (32 ! 128) images.

We performed in vivo scans on a single healthy volun-
teer, using a Siemens Quantum Symphony scanner with
an eight-channel body array, after informed consent was
obtained according to our institutional standards. A car-
diac gated TrueFISP cine (TR " 2.8 ms, TE " 1.41 ms,
matrix " 168 ! 192, SL " 8 mm, bandwidth " 1185 Hz/
pixel) was acquired at various FOVs from 400 mm down to
275 mm. mSENSE and GRAPPA reconstructions were ac-
quired in sequential breath-holds. Reconstruction for both
algorithms was performed with the use of standard scan-
ner software at an acceleration factor of 2.

mSENSE is similar to the normal SENSE algorithm, ex-
cept that mSENSE uses an autocalibrating imaging se-
quence for coil sensitivity mapping wherein extra lines are
acquired during the acquisition, similar to GRAPPA. For
both of these reconstructions, 14 additional lines were
acquired in each frame for coil sensitivity calibration that
were not included into the final image reconstruction. Due
to its autocalibrating nature, mSENSE automatically cal-
culates apparent sensitivity values (as in Eq. [3]) whenever
the full FOV is aliased. As mentioned above, this feature
will typically result in residual aliasing near the object
edges, especially when low-resolution images are used to
determine the coil sensitivities, as was done in this study.

In GRAPPA, lines that are used to determine the recon-
struction parameters can be easily integrated into the final
reconstruction to reduce the intensity of any low-fre-
quency residual artifacts that may be present. As men-
tioned above, this option was not used in any of the com-
puter simulations, but was used in the in vivo scans.

RESULTS

Figures 4 and 5 show the results from the computer sim-
ulations for both reconstruction algorithms for accelera-
tions of R " 2 and R " 3, respectively. As long as the
reconstructed FOV is unaliased, both reconstructions have
identical performance at both accelerations. However, as
the FOV is decreased below the size of the object, the
images reconstructed with SENSE show residual aliasing
in the center of the object. These artifacts are significant,
even though the FOV in the middle row of these figures is

FIG. 4. Results of the computer
simulations at various FOVs for an
acceleration factor of 2: (left)
folded source images, (middle)
SENSE, and (right) GRAPPA. In
this case, the SENSE images
were reconstructed with the use
of cropped coil sensitivity maps.

1122 Griswold et al.
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Folded FOV in Calibration
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Folded Calibration ESPIRiT 2.0 vs mSENSE
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Adaptive Reconstruction of Phased Array MR Imagery
David O. Walsh,1 Arthur F. Gmitro,2* and Michael W. Marcellin3

An adaptive implementation of the spatial matched filter and its
application to the reconstruction of phased array MR imagery is
described. Locally relevant array correlation statistics for the NMR
signal and noise processes are derived directly from the set of
complex individual coil images, in the form of sample correlation
matrices. Eigen-analysis yields an optimal filter vector for the
estimated signal and noise array correlation statistics. The tech-
nique enables near-optimal reconstruction of multicoil MR imag-
ery without a-priori knowledge of the individual coil field maps or
noise correlation structure. Experimental results indicate SNR
performance approaching that of the optimal matched filter. Com-
pared to the sum-of-squares technique, the RMS noise level in
dark image regions is reduced by as much as !N, where N is the
number of coils in the array. The technique is also effective in
suppressing localized motion and flow artifacts. Magn Reson
Med 43:682–690, 2000. © 2000 Wiley-Liss, Inc.
Key words: phased array MRI; image reconstruction; noise re-
duction; motion artifacts

The use of phased arrays in MRI is a fairly recent devel-
opment, and is motivated by the never-ending quest for
improved signal-to-noise ratio (SNR). A small surface coil
has an inherent SNR advantage over a full body coil be-
cause of its spatially selective sensitivity profile and prox-
imity to the source of the desired NMR signal. An array of
such coils provides the potential to simultaneously image
a large volume while preserving the SNR advantages of a
small surface coil (1).

Phased array MRI requires an image reconstruction al-
gorithm to combine the complex individual coil images
into a single composite image with full field-of-view. The
reconstruction process is modeled as the application of an
N " 1 complex filter vector m to coherently sum the N
complex individual coil images !Cj(x, y), j # 1, . . . , N" into
the composite image I(x,y):

I$x, y% ! #
j#1

N

m*j Cj$x, y%. [1]

The filter vector m may vary as a function of the spatial
coordinates (x,y). For convenience, we limit our discus-
sion to 2D image reconstruction with the understanding
that the reconstruction model and analysis can be readily
extended to three dimensions.

The optimal method for combining multicoil MR imag-
ery (the method that maximizes the SNR in the resulting

composite image) is the spatial matched filter (1). In gen-
eral, the matched filter is computed and applied on a
pixel-by-pixel basis. For a given pixel location, the
matched filter is computed as:

m ! Rn
&1b [2]

where b is a complex vector describing the magnitude and
phase of the transverse magnetic field created by each coil
at the given pixel location, and Rn is the array noise
correlation matrix (1). In practice, the array noise correla-
tion matrix can be measured directly through a pre- or
postscan noise calibration. However, accurate synthesis of
the signal-dependent term b requires a-priori knowledge of
the complex near-field sensitivity pattern for each coil, at
each location in the image field of view (FOV). Obtaining
this information in a clinical setting has proven problem-
atic (1–3). This limitation has motivated the development
and use of suboptimal reconstruction techniques that do
not require detailed coil field map information.

The various challenges associated with obtaining accu-
rate a-priori field map information have been reported
previously (1–3) and are summarized here. Direct calcula-
tion of the individual coil field maps via the Bio-Savart
law requires precise a-priori knowledge of each coil’s po-
sition in relation to the image FOV (1). This requirement is
particularly problematic for flexible phased-array coils.
Also, the individual coil field maps are somewhat depen-
dent on unpredictable coil loading effects (3). Individual
coil field maps may be estimated a-priori using a phantom
reference image approach (4,5). The phantom reference
approach is only applicable to fixed, rigid array coils, and
is still subject to the inaccuracies associated with unpre-
dictable coil loading (3). The individual coil field maps
may be estimated in vivo by acquiring one or more scout
images encompassing the full FOV (4). This approach is
time consuming, and is potentially sensitive to magnetic
field inhomogeneities (3). The individual coil field maps
may also be derived from a combination of body coil and
array coil images (6). This technique is time-consuming
(requires full FOV images), and is potentially sensitive to
subject motion (3). A recent contribution employs a 2D
polynomial fitting procedure to derive relative field map
information (7). This estimation technique has been ap-
plied to the reconstruction of subsampled data (7), but
presumably it could also be applied to the more general
phased-array reconstruction problem.

In lieu of a practical matched filter implementation, the
“sum-of-squares” technique (1) has become the standard
method of combining multicoil MR imagery. Essentially,
the sum-of-squares method uses the complex individual
coil image values at each pixel as an estimate of the un-
derlying coil sensitivity vector b. In its basic form, noise
correlations are ignored and the sum-of-squares recon-
struction reduces to the square root of the sum of the
squared individual coil magnitude images:
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2Arizona Health Sciences Center, The University of Arizona, Tucson, Arizona.
3Department of Electrical and Computer Engineering, The University of Ari-
zona, Tucson, Arizona.
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Perfect Blind Restoration of Images Blurred by
Multiple Filters: Theory and Efficient Algorithms

Gopal Harikumar, Member, IEEE, and Yoram Bresler, Fellow, IEEE

Abstract— We address the problem of restoring an image
from its noisy convolutions with two or more unknown finite
impulse response (FIR) filters. We develop theoretical results
about the existence and uniqueness of solutions, and show that
under some generically true assumptions, both the filters and
the image can be determined exactly in the absence of noise,
and stably estimated in its presence. We present efficient al-
gorithms to estimate the blur functions and their sizes. These
algorithms are of two types, subspace-based and likelihood-based,
and are extensions of techniques proposed for the solution of
the multichannel blind deconvolution problem in one dimension.
We present memory and computation-efficient techniques to
handle the very large matrices arising in the two-dimensional
(2-D) case. Once the blur functions are determined, they are
used in a multichannel deconvolution step to reconstruct the
unknown image. The theoretical and practical implications of
edge effects, and “weakly exciting” images are examined. Fi-
nally, the algorithms are demonstrated on synthetic and real
data.

Index Terms— Blind deconvolution, identification, image re-
covery, inverse problems, maximum likelihood, multichannel,
reconstruction, subspace methods.

I. INTRODUCTION

THE BLIND restoration of an image from a noisy, blurred
version is a well-known problem in image processing (see

[1]–[3] and the references therein). However, in many cases,
more than one differently blurred version of the image may
be available. Examples of such “sensor diversity” (illustrated
in Fig. 1) include remote sensing, where the same scene may
be observed at different time instants through a time-varying
inhomogeneous medium such as the atmosphere; electron
microscopy, where a micrograph of the same specimen may
be acquired at several different focus settings (none of which
is known accurately); or broadband imaging through a fixed
refracting, diffracting, or scattering medium, which has a
different transfer function at different frequencies. We show
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Fig. 1. Multichannel blind deconvolution problem. and the have to
be recovered from the .

that under such circumstances, it is possible to estimate the
blur functions directly by a simple one-step procedure, and
reduce the problem to the relatively easy case of nonblind de-
convolution. When the different blur functions satisfy certain
conditions, even this last step of (nonblind) deconvolution can
be greatly facilitated by the multichannel formulation [4]–[6].
Nonblind deconvolution is in general an ill-posed problem

because of two reasons: the lack of information at those
frequencies corresponding to the zeros of the filter, and edge-
effects arising due to the paucity of data near the edges of
the image. The blind deconvolution problem is even more
difficult. The single-channel blind and nonblind deconvolution
problems in two dimensions have been extensively studied
([1], [3], and [7]–[10], to name just a few) and a battery of
techniques have been proposed for their solution. They usually
involve a combination of regularization and various statistical
or other simplifying assumptions about the image and/or the
filter, to guarantee a unique solution and stability against noise
and modeling errors.
Remarkably, nonblind multichannel deconvolution is poten-

tially free of the problems arising from the zeros of the filter,
where the lack of information in one frequency from one filter
is balanced by the information at the same frequency from the
others [5], [11]. Likewise, the blind deconvolution problem
is greatly simplified by the availability of several different
channels. The multichannel blind deconvolution problem in a
one-dimensional (1-D) setting has attracted considerable at-
tention recently, and some very efficient algorithms have been
proposed [12]–[15] for its solution. Most of these techniques
first estimate the channels and use these estimates to solve for
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Some comments so far...

• Theory of optimal auto-calibration
– Leads from GRAPPA-like acPI to SENSE

• Explained the FOV problem in terms of 
EigenVals/Vecs of operators

• Very robust and efficient coil combination
• Complexity of the reconstruction reduced 

from O(n2) to O(n).
 n is # coils.
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• What if there’s no calibration?
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A = USV* threshold

Post-Cartesian Calibrationless

Grid

Grid-1



Calibrationless Post-Cartesian

3-fold undersampling

Uniform Spirals

8-chan Cardiac coil direct (slower)

calibration (fast) SPIRiT



Alternatives and Related

Joint Image Reconstruction and Sensitivity Estimation in
SENSE (JSENSE)
Leslie Ying* and Jinhua Sheng

Parallel magnetic resonance imaging (pMRI) using multichannel
receiver coils has emerged as an effective tool to reduce imag-
ing time in various applications. However, the issue of accurate
estimation of coil sensitivities has not been fully addressed,
which limits the level of speed enhancement achievable with
the technology. The self-calibrating (SC) technique for sensitiv-
ity extraction has been well accepted, especially for dynamic
imaging, and complements the common calibration technique
that uses a separate scan. However, the existing method to
extract the sensitivity information from the SC data is not ac-
curate enough when the number of data is small, and thus
erroneous sensitivities affect the reconstruction quality when
they are directly applied to the reconstruction equation. This
paper considers this problem of error propagation in the se-
quential procedure of sensitivity estimation followed by image
reconstruction in existing methods, such as sensitivity encod-
ing (SENSE) and simultaneous acquisition of spatial harmonics
(SMASH), and reformulates the image reconstruction problem
as a joint estimation of the coil sensitivities and the desired
image, which is solved by an iterative optimization algorithm.
The proposed method was tested on various data sets. The
results from a set of in vivo data are shown to demonstrate the
effectiveness of the proposed method, especially when a rather
large net acceleration factor is used. Magn Reson Med 57:
1196–1202, 2007. © 2007 Wiley-Liss, Inc.
Key words: joint estimation; SENSE; self calibration; variable
density acquisition; sensitivity estimation

Parallel magnetic resonance imaging (pMRI), as a fast im-
aging method, uses an array of RF receiver surface coils to
acquire multiple sets of undersampled k-space data simul-
taneously. Over the past few years a number of pMRI
techniques have been proposed for reconstructing a com-
plete MR image from these undersampled data in either
k-space or the image domain. Some of these methods, such
as partially parallel imaging with localized sensitivities
(PILS) (1), auto simultaneous acquisition of spatial har-
monics (AUTO-SMASH) (2), variable density (VD)-AUTO-
SMASH (3), and generalized autocalibrating partially par-
allel acquisitions (GRAPPA) (4), do not need the explicit
functions of coil sensitivity, while others, such as SMASH
(5), sensitivity encoding (SENSE) (6), and sensitivity pro-
files from an array of coils for encoding and reconstruction
in parallel (SPACE-RIP) (7), require the functions to be
given exactly. For the methods in the latter category, the

sensitivity estimation method is as important as the recon-
struction algorithm (8).

Unfortunately, the existing techniques for determining
sensitivity functions are not yet satisfactory. The most
common technique has been to derive sensitivities directly
from a set of reference images obtained in a separate cali-
bration scan before or after the accelerated scans. This
calibration scan can prolong the total imaging time, par-
tially counteracting the benefits of reduced acquisition
time associated with pMRI. Another practical problem
with this technique is that misregistrations or inconsisten-
cies between the calibration scan and the accelerated scan
result in artifacts in the reconstructed images, which is a
major concern in dynamic imaging applications. Adaptive
sensitivity estimation (9,10) has been proposed for these
applications. Based solely on the data from accelerated
scans, the method uses unaliasing by Fourier-encoding the
overlaps using the temporal dimension (UNFOLD) (11) to
generate low-temporal-resolution, aliasing-free reference
images for sensitivity estimation. However, UNFOLD is
limited to dynamic applications in which at least half of
the field of view (FOV) remains static over time. A more
general method is the self-calibrating (SC) technique,
which also eliminates a separate calibration scan but ac-
quires VD k-space data during the accelerated scan (8). The
VD acquisition includes a small number of fully sampled
lines at the center of k-space, known as autocalibration
signal (ACS) lines, in addition to the down-sampled lines
at outer k-space. These central k-space lines after Fourier
transformation produce low-resolution in vivo reference
images !"#r!$sl#r!$%*h#r!$, where the product of the coil sensi-
tivity Sl#r!$ of the lth channel and the image of transverse
magnetization "#r!$ is convolved (*) with h#r!$, the Fourier
transform of the truncation window that truncates the
central k-space. The convolution is due to the use of only
the central k-space data, which results in a low-resolution
measurement. To derive the sensitivities, these low-reso-
lution reference images are divided by their sum-of-
squares (SoS) combination (8,12):

ŝl#r!$ !
!"#r!$sl#r!$%*h#r!$

"&l#!"#r!$sl#r!$%*h#r!$#2
[1]

In addition to the assumption of spatially uniform
"&l#!sl#r!$#2, which is in common with the calibrating tech-
nique with a separate scan, Eq. [1] also assumes that the
multiplication with sl#r!$ and the convolution with h#r!$ are
commute, i.e.,

!"#r!$sl#r!$%*h#r!$ ! !"#r!$*h#r!$%sl#r!$. [2]

where equality holds only if h#r!$ is a Dirac delta function,
i.e., when there is no data truncation, or sl#r!$ is spatially a
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Nonlinear Inverse Reconstruction for Real-Time MRI of
the Human Heart Using Undersampled Radial FLASH
Martin Uecker,* Shuo Zhang, and Jens Frahm

A previously proposed nonlinear inverse reconstruction for auto-
calibrated parallel imaging simultaneously estimates coil sen-
sitivities and image content. This work exploits this property
for real-time MRI, where coil sensitivities need to be dynami-
cally adapted to the conditions generated by moving objects.
The development comprises (i) an extension of the nonlin-
ear inverse algorithm to non-Cartesian k-space encodings, (ii)
its implementation on a graphical processing unit to reduce
reconstruction times, and (iii) the use of a convolution-based
iteration, which considerably simplifies the graphical process-
ing unit implementation compared to a gridding technique. The
method is validated for real-time MRI of the human heart at
3 T using radio frequency-spoiled radial FLASH (pulse repetition
time/echo time = 2.0/1.3 ms, flip angle 8◦). The results demon-
strate artifact-free reconstructions from only 65–85 spokes,
with 256 oversampled data points. Acquisition times of 130–
170 ms resulted in 29–38 frames per second for sliding window
reconstructions (factor 5). While offline reconstructions required
1–2 sec, real-time applications with modified parameters and
slightly lower image quality were achieved within 90 ms per
graphical processing unit. Magn Reson Med 63:1456–1462,
2010. © 2010 Wiley-Liss, Inc.
Key words: inverse problems; iterative reconstruction; parallel
imaging; nonlinear inversion; real-time imaging; cardiac imag-
ing; GPU

Recently, nonlinear algorithms for improved autocalibrated
parallel imaging (1,2) have been described, which com-
bine the use of variable density trajectories with the joint
estimation of image content and coil sensitivities. For the
algorithm presented in Uecker et al. (2), it could also be
shown that only a very small central k-space area with
full sampling is required for accurate autocalibration. Both
properties are particularly attractive for real-time imaging,
where the coil sensitivity information has to be frequently
updated to match the actual experimental situation gener-
ated by a moving object. A further strength of the algorithm
is its inherent flexibility, which allows for arbitrary sam-
pling patterns and k-space trajectories. In fact, the specific
application to a radial trajectory leads to a completely self-
contained reconstruction process, so that the real-time data
can be processed without any special calibration of the coil
sensitivities.

In order to apply a nonlinear inverse reconstruction to
non-Cartesian k-space data, it has been proposed to add
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an interpolation step to each iteration of the algorithm (3).
Because such computations are rather slow, one may con-
sider the use of a graphical processing unit (GPU) to achieve
reasonable reconstruction times. A corresponding imple-
mentation for iterative SENSE (4) has indeed been utilized
for real-time imaging (5). However, an efficient imple-
mentation of the interpolation algorithm on a GPU is a
difficult and time-consuming task. The present work there-
fore describes an alternative solution. The extension of our
previous work (2) to a non-Cartesian radial trajectory is
accomplished by only a single interpolation performed in a
preparatory step, while the subsequent iterative optimiza-
tion relies on a convolution with the point-spread function.
Although this idea has also been proposed for iterative
SENSE (6), it was not found to be faster than the interpo-
lation technique (7). However, in terms of computational
demand and in contrast to an interpolation, a convolu-
tion mainly involves two applications of a fast Fourier
transform algorithm. It therefore allows for a very simple
GPU implementation, which then may be exploited to real-
ize considerable reductions of the reconstruction time. To
further reduce the computational demand, a channel com-
pression technique was implemented, which combines the
data from multiple physical receive channels into a smaller
number of “virtual channels” that represent their principal
components.

Experimental demonstrations of the proposed method
deal with real-time MRI of the human heart based on
undersampled radial fast low angle shot (FLASH) acqui-
sitions (8). The method offers robust imaging at high tem-
poral resolution, without cardiac gating, and during free
breathing.

THEORY

Regularized Nonlinear Inversion

The MRI signal equation is a nonlinear equation, which
maps the unknown spin density ρ and coil sensitivities cj
to the data acquired from all receive coils

F : x := (ρ, c1, . . . , cN ) !→ (s1, . . . , sN ). [1]

The operator is given by

F : x !→





P#kFPFOV {c1 · ρ}
...

P#kFPFOV {cN · ρ}



 with x =





ρ

c1
...

cN




, [2]

where F is the (multidimensional) Fourier transform, P#k
is the orthogonal projection onto the trajectory, and FOV
is the field of view. Because the object is restricted to a

© 2010 Wiley-Liss, Inc. 1456

Iterative GRAPPA (iGRAPPA) for Improved Parallel
Imaging Reconstruction
Tiejun Zhao and Xiaoping Hu*

In this work an iterative reconstruction method based on gen-
eralized autocalibrating partially parallel acquisitions (GRAPPA)
reconstruction is introduced. In the new method the recon-
structed lines are used to reestimate and refine the weights
from all the acquired data by applying the GRAPPA procedure
iteratively with regularization. Both phantom and in vivo MRI
experiments demonstrated that, compared to GRAPPA, the it-
erative approach reduces parallel imaging artifacts and permits
high-quality image reconstruction with a relatively small num-
ber of calibration lines and slight changes of GRAPPA
weights. Magn Reson Med 59:903–907, 2008. © 2008 Wiley-
Liss, Inc.
Key words: parallel imaging; GRAPPA; iterative reconstruction;
image reconstruction; artifact reduction

Partially parallel acquisition techniques have been intro-
duced to accelerate data acquisition for MRI (1). The gen-
eralized autocalibrating partially parallel acquisition
(GRAPPA) is an autocalibrating parallel imaging technique
that reconstructs data in k-space based on additionally
acquired calibration data (2). Although it is recognized
that utilizing more data in the GRAPPA fitting, such as
utilizing data points in readout direction (3), improves the
reconstruction, doing so may increase calibration data
needed and reduce the effective acceleration factor. On the
other hand, it was recently shown that the GRAPPA recon-
struction can be reformulated as a matrix operator (4).
With this formalism it is possible to reconstruct images
directly from the undersampled data without reference
lines by calculating the roots of a weight matrix derived
from the undersampled data themselves (4,5). While this is
an attractive approach in principle, in practice it is limited
by the difficulty in determining the square root of a large
matrix and the requirement of special coil configurations.
Nonetheless, this formalism suggests that the acquired
noncalibration lines do contain information that can be
used to improve the GRAPPA reconstruction.

In the present work an iterative GRAPPA reconstruction
method (iGRAPPA), which exploits all acquired lines in
addition to the calibration lines in deriving the GRAPPA
interpolation weights, is introduced and demonstrated. In
iGRAPPA a few calibration lines are acquired and used to
obtain an initial estimate of weights for the GRAPPA in-
terpolation. The missing lines are subsequently estimated

using these weights. Since the weights from GRAPPA fit-
ting are in principle the same across the entire k-space, the
estimated missing lines should be capable of predicting
the acquired lines, allowing us to derive a new estimate of
the GRAPPA weights based on interpolating the filled
lines to predict the acquired lines. This procedure, plus a
regularization strategy described below, is repeated until
convergence in the estimated weights is reached. Applica-
tion of this method to phantom and in vivo data demon-
strates that the new method reduces reconstruction arti-
facts and allows high-quality imaging reconstruction with
a relatively small number of calibration lines.

MATERIALS AND METHODS

All experiments were carried out on a 3.0T Siemens Tim
MR scanner (Siemens Medical Solutions, Malvern, PA)
using a 12-channel head coil for detection and body coil
for transmitting. Fully sampled, multichannel phantom
imaging data were obtained using a gradient-echo se-
quence with the following parameters: TE ! 4 ms, TR !
700 ms, matrix size ! 128 " 128, field of view (FOV) !
256 " 256 mm2, flip angle ! 70°, bandwidth ! 460 Hz per
pixel, and slice thickness ! 5 mm. Data for accelerating
factors of 2, 3, and 4 with one calibration block (see Fig. 1
for details) were synthesized by subsampling the fully
sampled data. To demonstrate iGRAPPA’s robustness to
the changes between the calibration and acquisition of the
imaging data, two measurements were carried out on the
phantom with a slight change of phantom position during
the measurements. The first measurement was used as the
reference scan and the second measurement was sub-
sampled to synthesize data for accelerating factor of 2
without any calibration lines. The low k-space (the center
48 lines) of the first measurement was used to calculate the
initial GRAPPA weights. The reconstruction procedures
were performed offline with programs written in Matlab
(MathWorks, Natick, MA). In this study, the interpolation
window for GRAPPA had a size of 7 " 4 " 12 (readout "
phase encoding " coils). To demonstrate the applicability
of iGRAPPA for in vivo studies measurements were also
made on one healthy volunteer, with proper informed
consent and approval by our Institutional Review Board.
The subject was positioned supine inside the magnet and
image parameters used were identical to those used for the
phantom study.

Algorithm of iGRAPPA

Figure 1 illustrates the flow diagram of the iGRAPPA al-
gorithm. For the GRAPPA reconstruction with an acceler-
ation factor of R, we represent the interpolation using the
formalism introduced previously for a multicolumn and
multiline interpolation kernel (3):
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Comments

• Low-rank completion is an extension of sparsity to 
matrices.

• Can also be thought of as blind system identification
• Here, rank is not extremely low

– The Hankel structure is essential!

• Cadzow can fall to local minimum
– Variable density helps A LOT
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