AutoCalibrating Parallel MRI, with or without calibration lines, using Eigen-Vector analysis and structured low-rank matrix completion

(ESPIRIT 2.0)

M. Lustig¹, P. Lai², M. Murphy¹, S. Vasanawala⁴, M. Elad³, and J. Pauly⁴

¹UC Berkeley, ²GE Healthcare, ³Technion IIT, ⁴Stanford University

The Need for Speed

- MRI data collection is inherently slow
- Faster imaging is essential in many applications

- Parallel Imaging
 - Faster imaging by reducing data
 - Exploit multiple receiver arrays

cardiovascularultrasound.com

² siemensehealthcare.com

³ Jim Pipe, BNI

ultrasound

The Need for Speed

- MRI data collection is inherently slow
- Faster imaging is essential in many applications

- Parallel Imaging
 - Faster imaging by reducing data
 - Exploit multiple receiver arrays

- cardiovascularultrasound.com
- ² siemensehealthcare.com
- ³ Jim Pipe, BNI

Preface

Coil Arrays

Used to:

- Increase SNR
- Acceleration

32 channels becoming standard

12ch body coil

8ch head coil

* Courtesy, Phil Beatty

- Multiple local receiver coils
- Coil sensitivities provide additional information for reconstruction
- Allows undersampling/aliasing in k-space

Parallel receive coils reduce sampling requirements

Standard k-space sampling

Reduced k-space sampling

Parallel Imaging

Contents

Part I: **Explicit Sensitivity**based methods

Chapter 1: SMASH Chapter 2: SENSE Chapter 3::DFFGF Chapter 1: SMASH Chapter 2: SENSE Chapter 3::DFFGF Chapter 1: SMASH Chapter 2: SENSE Chapter 3::DFFGF Chapter 1: SMASH Chapter 2: SENSE apter 3::DFFGF _napter 1: SMASH Chapter 2: SENSE

Chapter 3::DFFGF

Part II: Autocalibration methods

Chapter 1: SMASH Chapter 2: SENSE Chapter 3::DFFGF Chapter 1: SMASH Chapter 2: SENSE Chapter 3::DFFGF Chapter 1: SMASH Chapter 2: SENSE Chapter 3::DFFGF Chapter 1: SMASH 2: SENSE Char S.AASH Chapter 2: SENSE

Chapter 3::DFFGI

SMASH

Sensitivity Encoding (SENSE)

SENSE model

*image, courtesy of Kevin King

Full inverse model

*image, courtesy of Kevin King

- Full inverse model
- Noise optimal

*image, courtesy of Kevin King

- Full inverse model
- Noise optimal
- One combined image

- Full inverse model
- Noise optimal
- One combined image

- Prone to errors in sensitivity map estimation.
 - Often less robust in practice

Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA)

Autocalibrating Model (GRAPPA)

Autocalibrating Model (GRAPPA)

AutoCalibration

- Autocalibration methods will have k-space center densely sampled
- Autocalibration tends to be more robust in practice

Correlation in k-space

- Image weighting is equivalent to k-space blurring
- Coil sensitivities are smooth, therefore the blurring kernel is compact.
- k-space becomes locally correlated.

k-Space variant interpolation.

k-Space variant interpolation.

k-Space variant interpolation.

k-Space variant interpolation

GRAPPA Calibration

GRAPPA Calibration

pattern

Autocalibration as a Subspace Method

A Different View

pattern

A Different View

A Different View

A Different View

A Different View

pattern

A Different View

pattern

Singular Value Decomposition

Calibration Matrix has a Null-space

Singular Value Decomposition

- Calibration Matrix has a Null-space
- The null-space <u>IS</u> our calibration information

Singular Value Decomposition

- Calibration Matrix has a Null-space
- The null-space <u>IS</u> our calibration information
- Same info used by GRAPPA/SPIRiT etc....

Singular Value Decomposition

singular Values

- Calibration blocks "live" in V_{\parallel}

calibration

singular Values

- Calibration blocks "live" in V_{\parallel}
- Acquisition blocks also "live" in $V_{\|}$

singular Values

- Calibration blocks "live" in V_{\parallel}
- Acquisition blocks also "live" in $V_{\|}$

acquisition

Calibration = Learn V_I

calibration

singular Values

singular vectors

- Calibration blocks "live" in V_{\parallel}
- Acquisition blocks also "live" in $V_{I\!I}$
- Calibration = Learn V_{\parallel}
- Recovery = Enforce V_{\parallel}

calibration

(and data consistency)

acquisition

singular Values

- Calibration blocks "live" in V_{\parallel}
- Acquisition blocks also "live" in $V_{I\!I}$
- Calibration = Learn V_{\parallel}
- Recovery = Enforce V_{\parallel}

calibration

(and data consistency)

acquisition

singular Values

Reconstruction

- Optimally use the calibration information
- Optimal reconstruction using calibration information
- Can be solved iteratively

Reconstruction

- Optimally use the calibration information
- Optimal reconstruction using calibration information
- Can be solved iteratively

Back to SENSE with Eigen-Vector Analysis

Solution spanned by eigenVecs with eigenVals = 1

- Solution spanned by eigenVecs with eigenVals = 1
- Approach:
 - Compute eigenVecs explicitly
 - -Project only on those with eigenVals = 1

- Solution spanned by eigenVecs with eigenVals = 1
- Approach:
 - Compute eigenVecs explicitly
 - -Project only on those with eigenVals = 1

Eigen-decomposition is fast in image domain.

 v_3

Eigen Vectors

EigenVecs with EigenVals = 1 are "sensitivity maps"

Solution is spanned by sensitivity maps

- EigenVecs with EigenVals = 1 are "sensitiv" maps" Totally makes sense!
- Solution is spanned by real

Calibration

Construct A

[U,S,V]=SVD(A)

Construct V_{\parallel}

Eigen-decomp $\mathcal{V}_{\scriptscriptstyle \|}$

Maps with EigenVal=1

Reconstruction

Use maps with SENSE

Overcoming the FOV limitation

FOV limitations

Magnetic Resonance in Medicine 52:1118-1126 (2004)

Field-of-View Limitations in Parallel Imaging

Mark A. Griswold,^{1*} Stephan Kannengiesser,² Robin M. Heidemann,¹ Jianmin Wang,² and Peter M. Jakob¹

•

Folded positions have <u>multiple</u> eigenVals=1

Folded Calibration ESPIRIT 2.0 vs mSENSE

2-fold undersampling 8-channel head coil

Related Stuff

Magnetic Resonance in Medicine 43:682–690 (2000)

Adaptive Reconstruction of Phased Array MR Imagery

David O. Walsh,¹ Arthur F. Gmitro,^{2*} and Michael W. Marcellin³

MULTICHANNEL ESTIMATION OF COIL SENSITIVITIES IN PARALLEL MRI

Robert L. Morrison, Jr.[†], *Mathews Jacob*^{*}, and *Minh N. Do*^{†*}

Department of Electrical and Computer Engineering [†]Coordinated Science Laboratory and *Beckman Institute University of Illinois at Urbana-Champaign rlmorris@uiuc.edu, mjacob@uiuc.edu, minhdo@uiuc.edu

202

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 2, FEBRUARY 1999

Perfect Blind Restoration of Images Blurred by Multiple Filters: Theory and Efficient Algorithms

Gopal Harikumar, Member, IEEE, and Yoram Bresler, Fellow, IEEE

IMAGE RECONSTRUCTION FROM PHASED-ARRAY MRI DATA BASED ON MULTICHANNEL BLIND DECONVOLUTION

Huajun She¹, Rong-Rong Chen¹, Dong Liang², Yuchou Chang², Leslie Ying²

¹Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA ²Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, WI, USA

- Theory of optimal auto-calibration
 - -Leads from GRAPPA-like acPI to SENSE
- Explained the FOV problem in terms of EigenVals/Vecs of operators
- Very robust and efficient coil combination
- Complexity of the reconstruction reduced from O(n²) to O(n).
 n is # coils.

Going Calibrationless

- Autocalibration:
 - -k-space center densely sampled
- But Sometimes..
 - -Dense sampling can be \$\$\$
 - -Not enough of
 - -Hard to acquire
- Can we autocalibrate from sparsely sampled k-space?

What if there's no calibration?

The Calibration Matrix:

calibration matrix

The Calibration Matrix:

The Calibration Matrix:

Has Hankel structure

The Calibration Matrix:

- Has Hankel structure
- Rows are correlated

The Calibration Matrix:

Has Hankel structure

SVD(A)

low-rank

Singular values

Rows are correlated

Calibrate from sparse sampling

calibration matrix

Subsampled Matrix:

- Has Hankel structure
- Less Correlation

Impose:

- Low-Rank
- Hankel Structure
- Data Consistency
- Iterate

Impose:

- Low-Rank
- Hankel Structure
- Data Consistency
- Iterate

Impose:

- Low-Rank
- Hankel Structure
- Data Consistency
- Iterate

[U,S,V]=SVD(A)Singular values

calibration matrix

Impose:

- Low-Rank
- Hankel Structure
- Data Consistency
- Iterate

[U,S,V]=SVD(A)threshold Singular values

calibration matrix

Impose:

- · Low-Rank
- · Hankel Structure
- Data Consistency
- Iterate

[U,S,V]=SVD(A) $A = USV^*$ threshold Singular values

Impose:

- Low-Rank
- · Hankel Structure
- Data Consistency
- Iterate

 $A = USV^*$

[U,S,V]=SVD(A)

threshold

Singular values

Impose:

- Low-Rank
- · Hankel Structure
- Data Consistency
- Iterate

A = USV*

[U,S,V]=SVD(A)

threshold

Singular values

Original

x3 Calibrationless

x3 zero-fill

x3 undersampling

Poisson-Disc

8-chan head coil

Original

x3 Calibrationless

x3 zero-fill

direct (slower)

x3 undersampling Poisson-Disc 8-chan head coil

Original

x3 Calibrationless

x3 zero-fill

×3 undersampling Poisson-Disc 8-chan head coil

Original

x3 Calibrationless

x3 zero-fill

Post Cartesian

Post Cartesian

Post-Cartesian Calibrationless

Data Consistency?

Calibrationless Post-Cartesian

3-fold undersampling

- Uniform Spirals
- 8-chan Cardiac coil

Alternatives and Related

Magnetic Resonance in Medicine 57:1196-1202 (2007)

Joint Image Reconstruction and Sensitivity Estimation in SENSE (JSENSE)

Leslie Ying* and Jinhua Sheng

Magnetic Resonance in Medicine 63:1456-1462 (2010)

Nonlinear Inverse Reconstruction for Real-Time MRI of the Human Heart Using Undersampled Radial FLASH

Martin Uecker,^{*} Shuo Zhang, and Jens Frahm

Magnetic Resonance in Medicine 59:903–907 (2008)

Iterative GRAPPA (iGRAPPA) for Improved Parallel Imaging Reconstruction

Tiejun Zhao and Xiaoping Hu^{*}

Comments

- Low-rank completion is an extension of sparsity to matrices.
- Can also be thought of as blind system identification
- Here, rank is not extremely low
 - The Hankel structure is essential!
- Cadzow can fall to local minimum
 - Variable density helps <u>A LOT</u>

Acknowledgments

- John Pauly (Stanford)
- David Donoho (Stanford)
- Mark Murphy (UCB)
- Peter Shin (UCSF)
- Daniel Vigniron (UCSF)
- Peder Larson (UCSF)
- Anja Brau (GE ASL west)
- Peng Lei (GE ASL west)
- Michael Elad (Technion)

Thank you! תודה רבה

Support: NIH RO1EB009690, RO1EB007588, RR09794-15 UC Discovery Grant 193037 GE Healthcare