

Irregular wideband array: time-domain microwave imager for radio astronomy and biomedicine

Tobia Carozzi

Onsala Space Observatory

Chalmers University

Sweden

Crazy idea

- Biomedical and Radio astronomical imaging could benefit from each other
 - Both in
 - Algorithms
 - Technology
- Create an instrument technology and algorithms that could be used for both
 - Dubbed IWA (irregular wideband array)
- Submit proposal to FET-Open (Future & Emerging Technologies)

Prosposal response and evaluation (so far)

- Has been very good
 - Evaluation score in 1st phase for scientific novelty/quality was 4,5 (where 4 is very good and 5 is excellent)
 - Evaluation of final proposal has also been very good
 - Stand a good chance of funding
- This BASP conference is further evidence that there is an interest in this cross-discipline

IWA proposal background

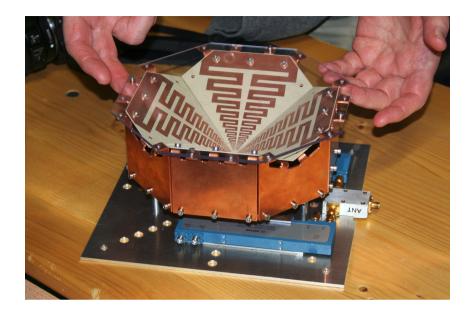
- FET OPEN call is for highly innovative high-risk projects
 - funded by EU FP7
- Budget: 2.2M Eu over 3 years
- usually only 2-3% of the applications funded
 - After phase 1, 10% best proposals

Proposal Team

- Put together by
- Chalmers University of Technology (CHALMERS) SE (Biomedical & Radio astronomy groups)
- Curtin University (CURTIN) AUS
- The Netherlands Institute for Radio Astronomy (ASTRON) NL
- University Carlos III De Madrid (UC3M) ES
- University of Manchester (UNIMAN) UK
- Université catholique de Louvain (LOUVAIN) BE

IWA proposal abstract

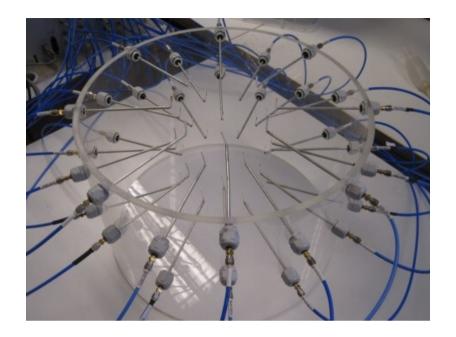
- Basic idea
 - Create synergy in imaging technology between biomedicine and radio astronomy
- Use
 - Microwave arrays
 - Novel Ultra wideband technology
 - New interferomeric imaging algorithms


IWA technology overview

- Two prototypes:
 - 32 element array at 70-800 MHz for radio astronomy
 - 5 element array, mechanically scanned, at 500-4000 MHz Rx plus transmitter for biomedicine
- But similar technologies:
 - Ultrawide band (UWB) system
 - Time-domain based
 - Irregular array configuration

IWA antennas

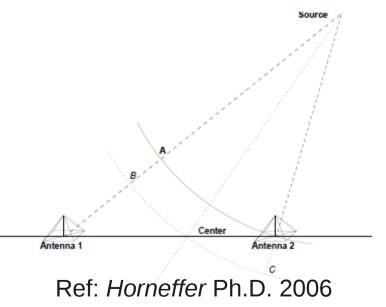
- Will use "Eleven feed"like antennas
 - (10:1) relative bandwidth
 - 11 dBi directivity
 - Dual-polarized
 - Developed at Chalmers
 - Phase reference center does not vary with frequency


IWA novelity: temporal domain processing

- Main focus will be to explore time-domain based processing for
 - Interferometry
 - Contrast to traditional frequency-domain which assumes
 - stationary sources
 - stable observations
 - Far-fields
 - Will better handle
 - Transient sources
 - Time-frequency smearing
 - Near-fields
 - Channel sounding
 - Contrast to frequency scanning

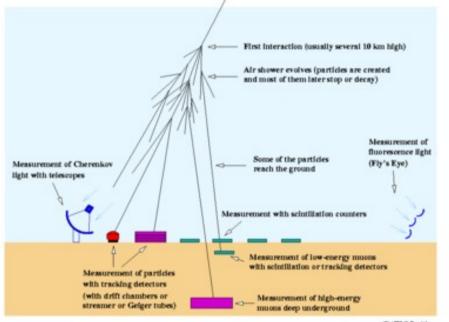
IWA science: Biomedicine

- UWB Microwave imaging
 - advantages:
 - Nonionizing radiation
 - Cheap
 - Compact
 - Disadvantages:
 - Resolution is low (~cm)
- Scenarios:
 - Quick diagnostics in ambulance or at accident sites
 - Alternative in mammography to minimize false detections (traditional X-ray has low contrast, microwave hi contrast)


IWA science: Radio astronomy

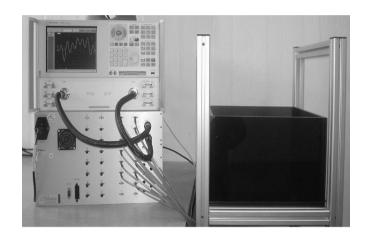
- Microwave domain is very important in radio astronomy
 - Stationary sources are assumed, leading to
 - Frequency-domain based technology (banded) and imaging
- UWB system could either
 - Be a cheaper solution (only one band rather than several)
 - Open door for new time-domain based imaging
- Scenarios
 - Fast transient sources: pulsars, air showers, solar radio bursts etc.

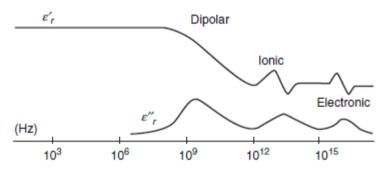
Time domain imaging astronomy


- Basic time domain interferometry uses time delays on baselines rather than phase delays
- "Closure-errors" between three elements are expected for Near-fields
 - Triangulation gives minimal unique source localization
 - Four delays needed for closureerrors

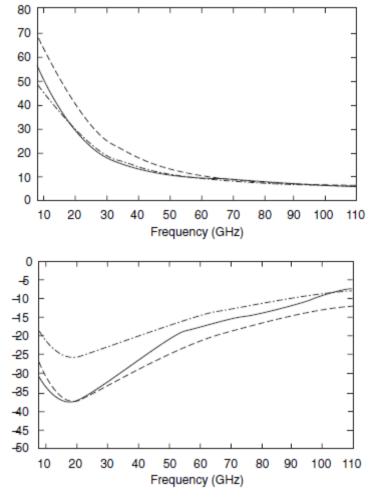
Example: Air showers

Measuring cosmic-ray and gamma-ray air showers


(C) 1000 K. Bernishe


Time domain radio scan in biomedicine

- Frequency domain imaging in biomedical applications
 - Network analyser sweeps through band frequency by frequency
 - Slow, bulky
- Time domain (non-impulsive)
 - Pulsed system
 - Fast, compact



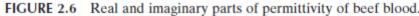
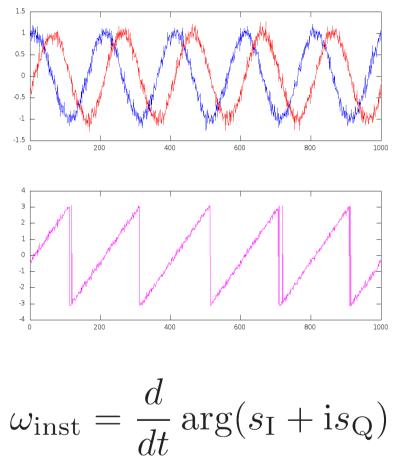

Example: biomedical radio scans

FIGURE 1.3 Permittivity as a function of frequency (from [3], courtesy of De Boeck, Brussels).

Similarities with Faraday Rotation Measures in astronomy

Figures taken from A. Vander Vorst "RF/Microwave Interaction with Biological Tissues" 2006

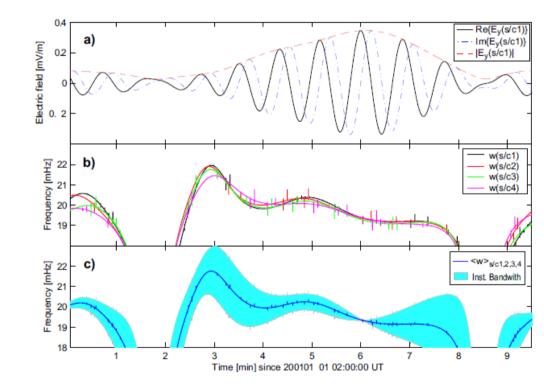
15/20

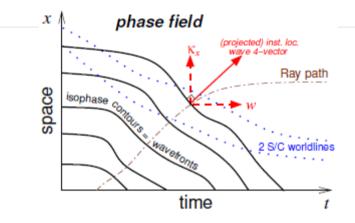

Algorithm development

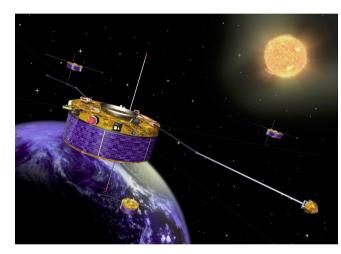
- Radio astronomy
 - Explore time-domain interferometry
 - Free to use wavelets to channelize voltage streams instead of Fourier transform (improve time-frequency smearing)
 - Free to use Wigner-Ville transform instead of power spectral channels (discover coherent sources)
- Biomedicine
 - Explore time-domain sounding
 - and polarimetric sounding
 - Faraday rotation effects?

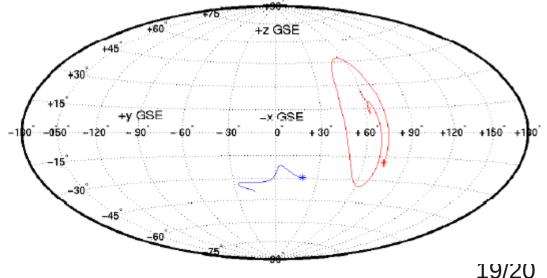
Extreme Fourier sampling: instantaneous frequency estimation

- For certain signals, frequency can be determined from just 2 time samples!
 - "Beats" Heisenberg uncertainty
- How?


- Many radio receivers use inphase-quadrature (IQ) sampling
- If Q channel not available, use Hilbert transform of I channel
- Compute phase of this complex signal as function of time
- Derivative wrt time is instantaneous estimate of frequency of single component source


Instantaneous frequency example


- real-valued electric field measurements from Cluster spacecraft in Solar wind
- were complexified using Hilbert transform
- Inst. freq. was found to wobble
- But we also had multiple spatial samples...



Local wavenumber vector estimation

- Local wavenumber vector can be estimated analogously to instantaneous frequency (replace time with space)
- 3D sampling of wave field allows discrete estimation of spatial gradient of phase
- Local-instantaneous estimate of wave vector gives position or "image" of transient/moving source
- e.g.: Carozzi et al (2004) used this technique with 4 Cluster spacecraft

Conclusion & Future

- Crazy idea combine astronomy and biomedicine imaging within one instrument technology – seems to have some traction
- Hopefully I will be able to come back year with the first result from this crossdisciplinary project