

First PbPb Collisions at the LHC with the CMS Detector

Camelia Mironov

Introduction

- Heavy-ion collisions
- The CMS detector
- 1st PbPb run data
- Physics analyses (1st year)
 - Jets
 - Quarkonia
 - **Z**0

Introduction: Heavy-Ion Collisions

- Goal:
 - study the primordial matter of the Universe, a 'high-density' QCD matter where the relevant degrees of freedom are quarks and gluons
 - the Quark-Gluon Plasma (QGP)
 - Search/recreate the QGP
 - Measure its properties
 - Discovery new features

MACHINE	AGS	SPS	RHIC	LHC
Sqrt(s _{NN}) (GeV/A)	4	17	200	2760 5500

Chemical freezeout ($T_{ch} \le T_c$): inelastic scattering ceases Kinetic freeze-out ($T_{fo} \le T_{ch}$): elastic scattering ceases

Introduction: Heavy-Ion Collisions

How:

One way: hard-probes (high pt/ET, or mass)

Essential

Baseline comparison

- Non-interactig probes (Z,prompt photons)
- Vacuum/pp and pA reference for cold nuclear matter effects

LHC

Higher energies \rightarrow higher rates for all probes

Better (than previous HI exp) detection capabilities

CMS Detector

SILICON TRACKER Pixels (100 x 150 μm²) ~1m² ~66M channels Microstrips (80-180μm) ~200m² ~9.6M channels

> *CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)* ~76k scintillating PbWO₄ crystals

PRESHOWER Silicon strips ~16m² ~137k channels

STEEL RETURN YOKI ~13000 tonnes

> SUPERCONDUCTING SOLENOID Niobium-titanium coil carrying ~18000 A

Total weight Overall diameter Overall length Magnetic field : 14000 tonnes : 15.0 m : 28.7 m : 3.8 T HADRON CALORIMETER (HCAL)

Brass + plastic scintillator ~7k channels **MUON CHAMBERS**

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers

FORWARD CALORIMETER Steel + quartz fibres ~2k channels

HI Preview? ... pp@7TeV high-multiplicity events

Long range, near side angular correlations

Intermediate p_T: 1-3 GeV/c

(b) MinBias, 1.0GeV/c<p_<3.0GeV/c

HI Preview? ... pp@7TeV high-multiplicity events

Hell broke loose!

- Effect similar to the observed in AuAu@200GeV at RHIC
- The result resisted any possible experimental/technical x-checks

The theorists joined the party

- Initial state correlations ("glasma flux tubes")
- Hydrodynamic flow of the medium
- Jet physics with a medium
- Plain jet physics (angular momentum conservation not accounted for)
- The experimentalist kept saying 'We don not claim QGP formation in pp'

And the real deal started with Pb beams on ...

Tachy Einance		Cook a stud	egistry	view.ifaci	ME basis	CME admin	The CMS cofts	Mitingen		CERNIZ	Troats&Tricks	Quickies 3	- narie -	cmcHI1 =	
CMS DQM Run Re	gistry	LUOK V Stu	CMS D	QM Run R	egistry	CM3_admin		Minings	IIIWWW	CERNY	freats@fricks+	Quickle	ev parisv	CHISTILLY	
	M Run R	egistry	r (Gl	obal)							GLOBAL	Analysis	Tools	5 L	Login
Direct Link:	http://pccmsd	lqm04.cern.	ch/runr	egistry/vie	ew.iface?ru	in=855078									
Workspace:	GLOBAL														
Run #	15043	31													
Events:	2605266														
Rate, Hz:	164.40113636	363636363	636363	63636363	63636										
Started:	2010-11-08 10	0:23:00.0					—► N	love	mbe	r 8tł	า, 2010				
Stopped:	2010-11-08 14	1:49:23.0	/				1	0.23	.00 (-				
B field, T:	3.8004883515	5625					I	0.20	.00 \						
Group:	Collisions10														
Global?	true														
Created:	2010-11-08 10	0:34:02.0													
Modified:	2010-11-08 14	4:53:55.0													
B field Comment:															
L1 key:	TSC_2010110	07_002377_	collisio	ns_BASE											
HLT key:	/cdaq/physics	Run2010H	l/v1.1/l	HiHLT/V2											
Stop reason:	Set Hcal in "	no suppress	ion" re	ad out mo	de										
Triggers	Trigger Sta	tus Comm	ent												
Beam Status	Time	E, Ge	V Fill	l x10 ⁸ (B1)	l x10 ⁸ (B2)	Comment									
	2010-11-08 14	47:04.0 3500	.0 1482	1.0	1.0	Comments 08- STABLE BEA TCTV in ALICE	11-2010 14:44:09 MS for IONS ** OUT	:							

8

And by the end, in December 8th 2010

Integrated luminosity for HI run, in units of minimum bias collisions (hadronic inelastic collisions)

Events selection

Maximize efficiency for hard-probes:

- Level 1 Trigger:
 - Coincidence of 2 scintillator counters OR
 - Coincidence of two HF (Hadron Forward calorimeter) towers
 - Jets and (di)muons
- High Level Trigger :
 - Jets
 - Muons
 - Photons
- Minimize backgrounds:
 - Veto on scintillator beam halo
 - At least 3 HF towers on each side above threshold
 - Reconstructed pixel vertex with two or more tracks
 - Beam-scraping removal with pixel cluster vertex compatibility

N_mb: 55mil events ---> Lumi=7.2 (mub)-1 (assuming Sigma_pbpb=7.65b) ¹⁰

Events classification

 Centrality – based on energy deposition in forward calorimeters (HF)

Jets

Jets in HI: RHIC (~10 years)

RHIC: sqrt(s_NN) = 200GeV/A

indirectly (until recently)

- via single particle spectra
- and angular correlations

Jets in HI: LHC (first hours)

What is going on ?!

CMS Jet reconstruction

Ј Туре

- Calorimetric Jets (CaloJetS): ECAL and HCAL deposits
- Track Jets: charged tracks
- Jet-Plus-Track Jets(JPT): calo jets + tracks
- Particle-Flow Jets(PFJet): cluster particle flow objects

- Algorithms
 - Iterative cone & anti-kT with background subtraction
 - FastJet (kT, anti-kT, etc) with internal bkg subtraction
- Special care in HI: Background subtraction
 - Large 'underlying event' activity, that depends on the multiplicity/centrality → specific bkg subtraction procedures

Dijets: selection

Jets

- Reconstructed
 - IC5 CaloJet with iterative bkg subtraction with R=0.5
- |eta|<2 (avoid edges)</pre>
- |phi1-phi2|>2.5 (back-to-back)
- Leading jet: ET>120GeV (trigger is fully efficient)
- Sub-leading jet: ET>50GeV ((believe) above bkg fluctuations)

Look at jet energy asymmetry distributions over many events:

$$A_{J} = \frac{E_{T}^{j1} - E_{T}^{j2}}{E_{T}^{j1} + E_{T}^{j2}}$$

Dijets: vacuum/pp reference

CMS pp@7TeV

→ Excellent agreement between PYTHIA and CMS pp@7TeV data

 \rightarrow Use PYTHIA as a reference at 2.76 TeV

Dijets: HI reference

- Reproduce the 'HI underlying event'
 - Embed MC PYTHIA dijets events into REAL DATA events
 - Add simulated response of individual detectors to data events
- Reconstruct the embedded jets and compare to
 - Real data dijets
 - PYTHIA dijets without any background (the vacuum reference)

Leading jet ET distributions

Leading Jet ET (GeV)

Leading jet ET distribution shape well reproduced by simulations

Azimuthal jet correlation

Select back-to-back dijets with $\Delta \epsilon \lambda \tau \alpha \Pi \eta \iota > 2.5$ for further study

Dijet imbalance

Significant dijet imbalance, well beyond that expected from MC, appears with increasing collision centrality

Dijet imbalance: quantify the effect

Fraction of jets with imbalance larger than 0.24, as a function of number of participating nucleons averaged over centrality bin.

Dijet imbalance

There is an effect.

□ Is it Physics (jet quenching) or ... not?

Robustness checks:

- Uniformity (eta, phi)
- Selection biases (different ET)
- Underlying event subtraction
- Jet resolution
- Jet energy corrections
- Different detector measurement with different reconstruction algo

Imbalance uniformity: pseudorapidity

Dijet Imbalance: ET selection bias

Vary the leading jet cutoff (ET = 120, 130, 140 GeV)

Vary the sub-leading jet cutoff (ET = 35, 50, 55 GeV)

(ET1-ET2)/(ET1+ET2)

Dijet imbalance: underlying event

From comparison of simulation with and without embedding: Background subtraction works really well

Dijet imbalance: jet resolution

The jet resolution was smeared by 10 and 50% in simulation

Dijet imbalance: different reconstructed jets

Particle Flow: Extensive use of tracker information, different background subtraction, different jet finder algorithm

Excellent agreement between two very different methods

Jets in HI: CMS

- □ January 16th:
 - Confident that the dijet imbalanced observed is not an artifact of the way the data was analyzed and events reconstructed (ATLAS arXiv:1011.6182)
 - Main question: where is the 'missing energy'?
- □ January 17th and 5 hypernews messages later:
 - Are you sure you are sure?
 - Matteo Cacciari, Gavin Salam, Gregory Soyez: http://arxiv.org/abs/1101.2878
 - The devil is in the details: fluctuations in the background, in the detector response, etc

http://arxiv.org/abs/1101.2878

Pythia embedded in HYDJET

Figure 3: Simulated distribution of A_J and $\Delta \phi$, as obtained when embedding Pythia events in a PbPb background described by HYDJET 1.6. None of the results in this figure involved jet quenching and the results obtained with HYDJET include a simple calorimeter simulation. Four different centrality regions are shown as indicated in the plots on the top row. For each plot there are results from Pythia simulations with two different generation cutoffs on the 2 \rightarrow 2 scattering, $p_t^{\min} = 10 \text{ GeV}$ and $p_t^{\min} = 70 \text{ GeV}$, so as to illustrate its impact. The results labelled "pp" reference always correspond to those of Fig. 2. Jet clustering has been performed with the anti- k_t algorithm [15] with R = 0.4, as implemented in FastJet [16] and the heavy-ion background subtraction has been performed as described in [9] with the background density estimated using a StripRange of half-width 0.8 centred on the jet being subtracted.

Control probe: photon+jet

 $E_{\tau}^{parton} \sim E_{\tau}^{\gamma}$

Dimuons

CMS Muon reconstruction

segments in the muon detector

 No combined (global) fit needs to be performed. No Stand Alone Muon needs to be reconstructed.

CMS: JPsi->µ⁺µ⁻

- From SPS->RHIC->LHC: no clear/unique understanding of J/Ψ production
 - make as many differential measurements in as broad as possible kinematical regions
- □ Things not clear in pp either (the baseline):

Figure 6: Differential prompt J/ψ production cross section, as a function of p_T for the three different rapidity intervals. The data points are compared with three different models, using the PYTHIA curve to calculate the abscissa where they are plotted [48].

CMS: arXiv:1011.4193

CMS pp: JPsi->µ⁺µ⁻

Different production sources:

Prompt: direct production, from χ_{c} and ψ' decays

 $\sigma(pp \to J/\psi + X) \cdot BR(J/\psi \to \mu^+\mu^-) = 70.9 \pm 2.1(\text{stat}) \pm 3.0(\text{syst}) \pm 7.8(\text{luminosity}) \text{ nb}$

Secondary: from B decays

 $\sigma(\text{pp} \rightarrow bX \rightarrow \text{J}/\psi X) \cdot \text{BR}(\text{J}/\psi \rightarrow \mu^+\mu^-) = 26.0 \pm 1.4 \text{ (stat)} \pm 1.6 \text{ (syst)} \pm 2.9 \text{ (luminosity) nb}$

|y|<2.4 pT [6.5,30]GeV/c

Figure 5: Fraction of the J/ ψ production cross section originating from b-hadron decays, as a function of the J/ ψ p_T , as measured by CMS in three rapidity bins and by CDF, at a lower collision energy.

Additional complications in HI: energy loss (both B and c)

Not trivial.

CMS HI Teaser: first look at Jpsi->µ⁺µ⁻ (prompt+non-prompt)

CMS: Upsilon->µ⁺µ⁻

- Successive melting of the 3 bound states, can act as a thermometer of the QGP
- □ At RHIC, just a handful (<100 in AuAu@200GeV, in ee channel)

CMS HI Teaser: first look at Upsilon->µ⁺µ⁻

Might need to wait for next year to get more data though ;)

CMS HI: Z->mumu

CMS Experiment at LHC, CERN Data recorded: Tue Nov 9 23:51:56 2010 CEST Run/Event: 150590 / 776435 Lumi section: 183

Muon 0, pt: 29.7 GeV

Muon 1, pt: 33.8 GeV

CMS HI: $Z^{0}(\mu^{+}\mu^{-})$

- Control probe of the medium (like photons, just much easier to reconstruct): for jets, or other processes
- Probe of initial state effects: modification of PDFs, multiparton scattering, energy loss ...
- □ It was never measured before in HI

μ

Summary

- First LHC PbPb collisions marked the opening of Pandora's Box for HI physics.
- The detector allows for precision and differential measurements of many observables in a wide kinematic range, which are mandatory for study of the properties of QGP.
- The abundance of information/possible measurements also oblige for precision measurements, looking into details and quantifying the effects.

Much to learn, you still have!

Back me up

Dijet Imbalance range

Maximum dijet imbalance sampled for various sub-leading jet cut-offs

Background subtraction

Event statistics in this analysis

Table 2: Various selections on the data set. % values are always with respect to to the line above (the cuts are applied in sequence).

Centrality	0-1	.0%	10-	30%	30-	100%	0-100%		
Cut	evts	%	evts	%	evts	%	evts	%	
tree entries	20023	100.00	19156	100.00	8654	100.00	47833	100.00	
L1a36 OR L1a44 (minbias)	20023	100.00	19156	100.00	8654	100.00	47833	100.00	
leading jet $E_T > 120 \text{ GeV}$	976	4.87	991	5.17	419	4.84	2386	5.45	
leading jet $ \eta < 2$	748	76.64	841	84.86	404	96.42	1993	83.53	
subleading jet $ \eta < 2$	722	96.52	799	95.00	389	96.29	1910	95.84	
subleading jet $E_T > 50 \text{ GeV}$	649	89.89	721	90.24	363	93.32	1733	90.73	
dphi of 2 jets $E_T > 2.5$	557	85.82	661	91.68	344	94.77	1562	90.13	

1562 dijets within our cuts

HI CaloJets: trigger efficiency

Dijet imbalance: jet resolution

The resolution of jets changes due to the heavy-ion underlying event

Black is the fitted resolution in peripheral events, Green is with estimated resolution due to background fluctuations

Dijet imbalance: jet energy scale

he energies of sub-leading jets were shifted up by 1σ of the uncertainty n the correction. he slope of the jet correction as a function of pT was shifted by 1σ of its ncertainty

Imbalance uniformity: azimuth

CMS pp@7TeV: Jpsi->mumu(inclusive)

