ELECTRON RECONSTRUCTION THROUGH OPEMUREC

- MC samples
- □ Reconstruction tool : OpEmuRec Fedra
- Results
- Outlook

MC production

- Beamfiles from ccali (Lyon)
- MC Production through OpRelease 3.2 SL5 software
 - OpSim
 - □ OpDigit: 100% efficiency, no disalignment between plates
 - OpEmulO: 100% & different other efficiencies
 - OpEmuRec : Fedra reconstruction & analysis
- □ Statistics: electron 1000 events

gamma 1000 events

Reconstruction tool

- OpEmuRec :
 - Fedra linking
 - Fedra alignment: not necessary for MC but useful

for software robustness

- Fedra tracking : nsegmin=2, ngap=3
- Fedra Vertexing: ProbMin=0.0001,dz=3000µm,

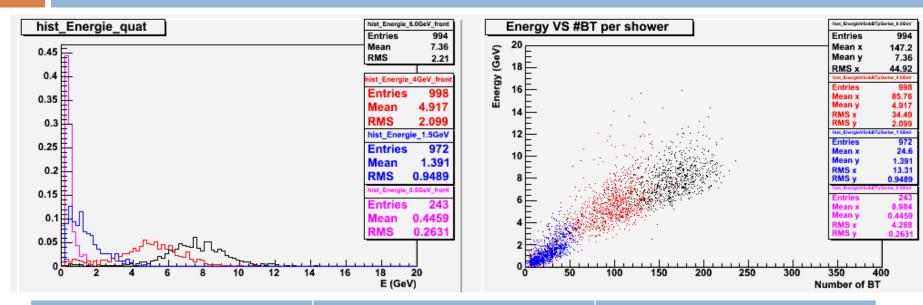
 $IPmax=100\mu m$

□ Fedra showering : nplatemin=4, ngap=3, cone

 $0.020 \text{ mrd} \& 800 \mu \text{m}$

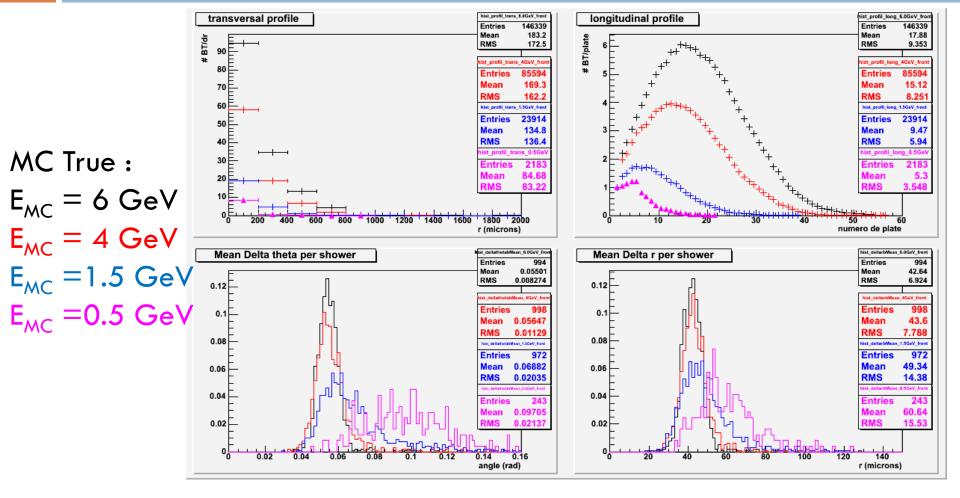
Use of OpEmuRec

- OpEmuRec v1 (SL5)
- OpEmuRec designed for event-per-event processing
- □ Need of « external » loop over events → C-shell script for instance

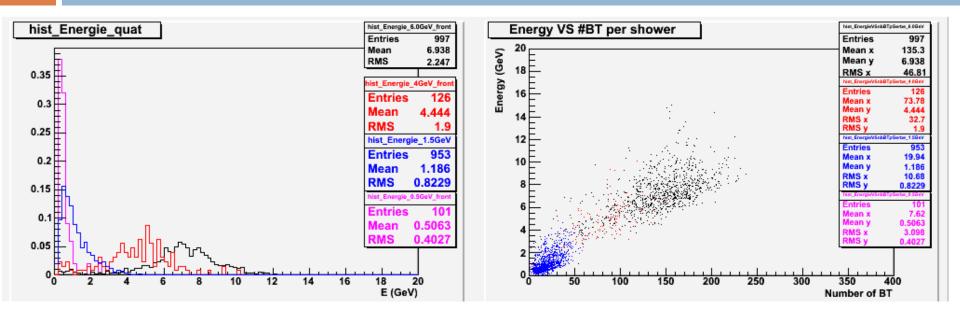

Fedra/SySal processes in OpEmuRec: Linking, Alignment, Tracking, Vertexing & Showering

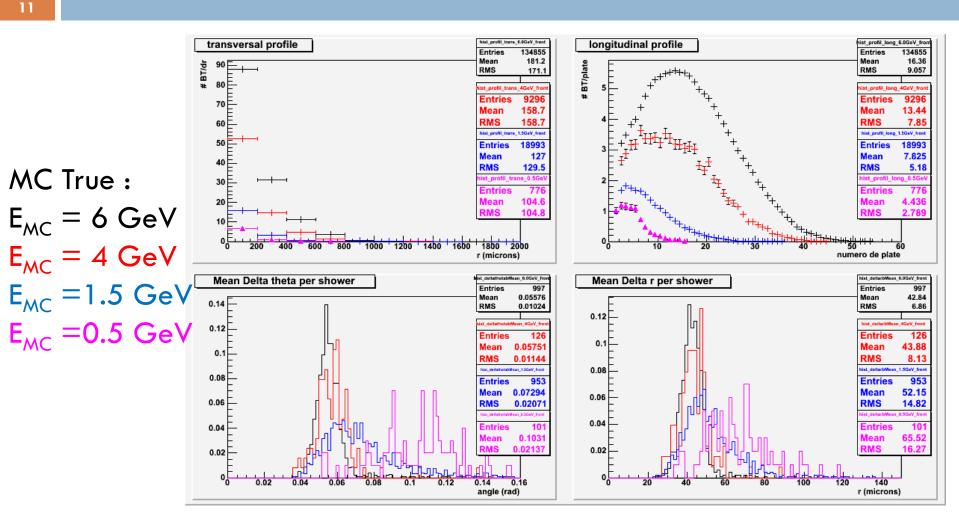
C-shell script submitted to the batch system Loop over events Creation of the config OpEmuRec process for OpEmuRec process file for the current event: the current event returns an output file ConfigEmuRec.C

Simulation parameters


- □ 1000 electrons, gammas
- □ 10, 6, 4, 1.5 & 0.5 GeV Energy
- Interaction point «FRONT»: before the brick in the middle of the transverse plane
- Propagation through the whole brick: 57 plates
- No incident angle

Electron reconstructed


MC Energy	EnergyMean	EnergyRMS
10 GeV	11.7	2.4 (20%)
6 GeV	7.4	2.2 (30%)
4 GeV	4.9	2.1 (43%)
1.5 GeV	1.4	0.9 (65%)
0.5 GeV	0.44	0.26 (60%)


Gamma reconstructed

10

MC energy	Mean Energy	RMS Energy
6 GeV	6.9	2.2 (32%)
4 GeV	4.4	1.9 (43%)
1.5 GeV	1.2	0.8 (67%)
0.5 GeV	0.64	0.55 (85%)

Gamma reconstructed

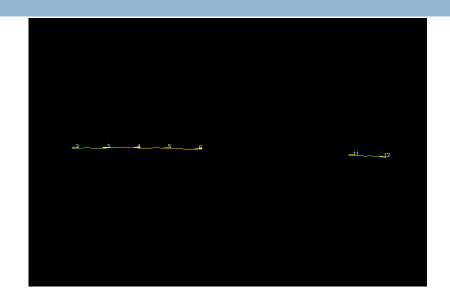
Collaboration meeting 03/12/10 - Florian Brunet

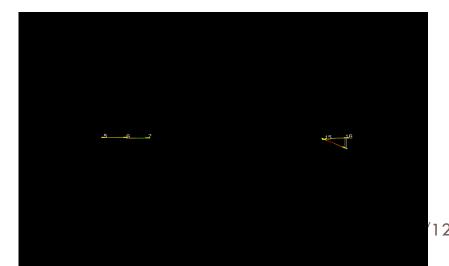
Outlook: Electron analysis

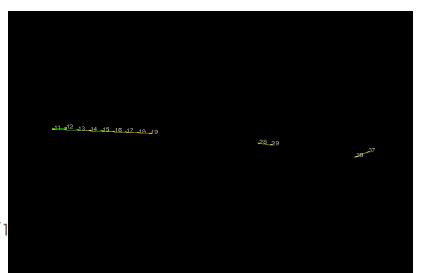
- □ Signal: $v_{\mu} \leftrightarrow v_{\tau}$: v_{τ}^{CC} interaction $\rightarrow \tau$ + hadronic shower & $\tau \rightarrow evv$
- Background: processes which mimick tau decay & give an electron
 - \mathbf{v}_{μ} interaction \rightarrow charm particles which may decay into electron as kink-like event
 - ${
 m v_e^{\, CC}}$ interaction ightarrow e which is going to scatter as a kink-like event
 - $\mathbf{v}_{\mu,\mathrm{e}}$ beam : $\mathbf{v}_{\mathrm{e},\mu}^{\mathrm{NC}}$ interaction ightarrow pion exchange process ightarrow π^0
- □ Signal $v_{\mu} \leftrightarrow v_{e} : v_{e}^{CC}$ interaction $\rightarrow e$ + hadronic shower
- Background: processes which contain electrons
 - v_e beam: v_e^{CC} interaction \rightarrow e + hadronic shower
 - v_{τ} from v_{μ} beam : v_{τ}^{CC} interaction $\rightarrow \tau$ + hadronic shower & $\tau \rightarrow evv$
 - $v_{u,e}$ beam : $v_{e,u}^{NC}$ interaction $\rightarrow v$ + hadronic shower with π^0 & $\pi^0 \rightarrow \gamma \gamma$
 - v_{μ} beam : v_{μ}^{CC} interaction $\rightarrow \mu$ missed $\rightarrow v_{\mu}^{\text{NC}}$ interaction
- \rightarrow Analysis of $\tau \rightarrow e$ channel

by reconstructing MC samples through OpEmuRec to take into account detector effects & to analyse MC samples as data

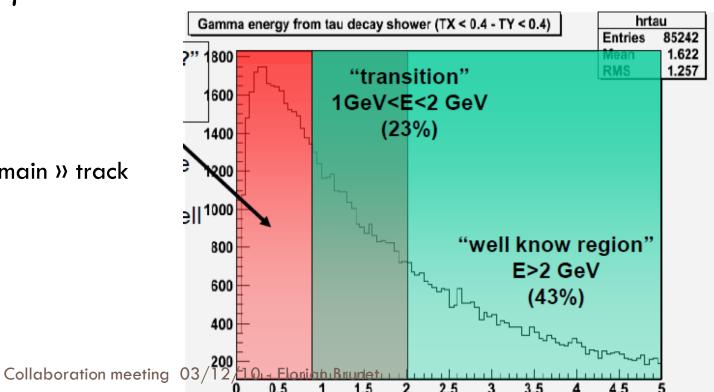
Outlook


- Electron reconstruction is working through OpEmuRec on MC samples
- Work is in progress about reconstruction of data
- Analysis of electron detection
- □ In parallel electron/gamma reconstruction tool for low energy < 2 GeV → electron working group


14 Back up slides


Gamma showers 0.5 GeV: Examples

1.5



Why do we need a good energy reconstruction of low energy gammas?

 $\tau \rightarrow$ h: 43% of γ have E>2 GeV & 83% E>0.5 GeV

Idea: PMCS on the « main » track

Analysis variables

- > Angle between neutrino and electron from CC interaction
- > Multiplicity
- ➤ Missing p_T
- \triangleright **p_T & energy** of primary electrons
- Visible energy